小客车 发表于 2025-3-21 17:01:24
书目名称Non-vanishing of L-Functions and Applications影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0667156<br><br> <br><br>书目名称Non-vanishing of L-Functions and Applications读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0667156<br><br> <br><br>护身符 发表于 2025-3-21 22:59:14
http://reply.papertrans.cn/67/6672/667156/667156_2.pngkyphoplasty 发表于 2025-3-22 03:47:21
http://reply.papertrans.cn/67/6672/667156/667156_3.png绿州 发表于 2025-3-22 08:14:10
Non-vanishing of L-Functions and Applications978-3-0348-8956-8Series ISSN 0743-1643 Series E-ISSN 2296-505XLANCE 发表于 2025-3-22 12:25:53
http://reply.papertrans.cn/67/6672/667156/667156_5.png反应 发表于 2025-3-22 13:05:38
https://doi.org/10.1007/978-3-0348-8956-8Number theory; alegbraic geometry; arithmetic; number theory; prime number神刊 发表于 2025-3-22 19:36:18
http://reply.papertrans.cn/67/6672/667156/667156_7.png混合,搀杂 发表于 2025-3-22 23:50:31
Artin ,-Functions,In this section, we shall collect together a few group theoretic preliminaries. We begin by reviewing the basic aspects of characters and class functions.离开 发表于 2025-3-23 05:03:05
Equidistribution and L-Functions,Let . be a compact topological space and .(.) the Banach space of continuous, complex-valued functions on ., with the supremum norm:水汽 发表于 2025-3-23 07:42:13
Dirichlet L-Functions,Let . denote a Dirichlet character and .(.) the associated Dirichlet .-function. Let us begin by considering how one would approach the problem of showing that .(1/2, .) ≠ 0. In the following, we assume that . is defined modulo a prime . We first study the average