Kennedy 发表于 2025-3-21 18:30:37

书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0667141<br><br>        <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0667141<br><br>        <br><br>

fructose 发表于 2025-3-21 23:34:51

Book 2021 investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric period

不在灌木丛中 发表于 2025-3-22 04:27:39

http://reply.papertrans.cn/67/6672/667141/667141_3.png

ESO 发表于 2025-3-22 06:58:51

Introduction and Overview,djoint and non-self-adjoint operators are discussed. In addition, we explain the need to search for new methods for various cases of the non-self-adjoint Schrdinger operators. Finally we discuss the method and difficulties of studying the Schrdinger operator with a periodic complex-valued potential.

stress-response 发表于 2025-3-22 09:00:39

Oktay VelievSolves the problem of the non-self-adjoint Schrödinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi

称赞 发表于 2025-3-22 15:57:45

http://image.papertrans.cn/n/image/667141.jpg

WAG 发表于 2025-3-22 18:08:59

https://doi.org/10.1007/978-3-030-72683-6Non-self-adjoint Operators; Schrödinger Operators; Periodic Differential Operators; PT-symmetric Potent

accrete 发表于 2025-3-22 21:37:34

http://reply.papertrans.cn/67/6672/667141/667141_8.png

senile-dementia 发表于 2025-3-23 05:03:28

http://reply.papertrans.cn/67/6672/667141/667141_9.png

Entirety 发表于 2025-3-23 05:36:48

http://reply.papertrans.cn/67/6672/667141/667141_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Non-self-adjoint Schrödinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u