Kennedy 发表于 2025-3-21 18:30:37
书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0667141<br><br> <br><br>书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0667141<br><br> <br><br>fructose 发表于 2025-3-21 23:34:51
Book 2021 investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric period不在灌木丛中 发表于 2025-3-22 04:27:39
http://reply.papertrans.cn/67/6672/667141/667141_3.pngESO 发表于 2025-3-22 06:58:51
Introduction and Overview,djoint and non-self-adjoint operators are discussed. In addition, we explain the need to search for new methods for various cases of the non-self-adjoint Schrdinger operators. Finally we discuss the method and difficulties of studying the Schrdinger operator with a periodic complex-valued potential.stress-response 发表于 2025-3-22 09:00:39
Oktay VelievSolves the problem of the non-self-adjoint Schrödinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi称赞 发表于 2025-3-22 15:57:45
http://image.papertrans.cn/n/image/667141.jpgWAG 发表于 2025-3-22 18:08:59
https://doi.org/10.1007/978-3-030-72683-6Non-self-adjoint Operators; Schrödinger Operators; Periodic Differential Operators; PT-symmetric Potentaccrete 发表于 2025-3-22 21:37:34
http://reply.papertrans.cn/67/6672/667141/667141_8.pngsenile-dementia 发表于 2025-3-23 05:03:28
http://reply.papertrans.cn/67/6672/667141/667141_9.pngEntirety 发表于 2025-3-23 05:36:48
http://reply.papertrans.cn/67/6672/667141/667141_10.png