缓和紧张状况 发表于 2025-3-21 18:31:59
书目名称Non-Noetherian Commutative Ring Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0666985<br><br> <br><br>书目名称Non-Noetherian Commutative Ring Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0666985<br><br> <br><br>Invigorate 发表于 2025-3-22 00:13:06
Mathematics and Its Applicationshttp://image.papertrans.cn/n/image/666985.jpg天然热喷泉 发表于 2025-3-22 02:09:59
http://reply.papertrans.cn/67/6670/666985/666985_3.png弯曲的人 发表于 2025-3-22 05:41:14
Half-Factorial Domains, a Survey,Let . be an integral domain. . is . if every nonzero nonunit of . can be written as a product of irreducible elements (or atoms) of . Let . represent the set of irreducible elements of . Traditionally, an atomic domain . is a unique factorization domain (UFD) if . .… . . = . .… . . for each ai and . . ∈. (.) implies:磨坊 发表于 2025-3-22 10:55:38
http://reply.papertrans.cn/67/6670/666985/666985_5.png存在主义 发表于 2025-3-22 14:16:28
http://reply.papertrans.cn/67/6670/666985/666985_6.pngBanister 发表于 2025-3-22 19:51:39
978-1-4419-4835-9Springer Science+Business Media Dordrecht 2000自传 发表于 2025-3-23 00:26:43
http://reply.papertrans.cn/67/6670/666985/666985_8.png休闲 发表于 2025-3-23 03:17:40
The Class Group and Local Class Group of an Integral Domain,tible (fractional) .ideals of . under t-multiplication, and let . (resp., . be its subgroup of principal (resp., invertible) (fractional) ideals. Then . is an abelian group, called the (.)class group of R; the Picard group of . is . and the local (.)class group of . is .. If . is a Krull domain, thepericardium 发表于 2025-3-23 09:30:20
http://reply.papertrans.cn/67/6670/666985/666985_10.png