MUMP 发表于 2025-3-25 05:15:54

http://reply.papertrans.cn/67/6670/666985/666985_21.png

奇怪 发表于 2025-3-25 10:43:18

http://reply.papertrans.cn/67/6670/666985/666985_22.png

conscribe 发表于 2025-3-25 14:23:45

Examples Built with D+M, A+XB and other Pullback Constructions,. and indeterminate y, then . = . + .[.]. is a discrete rank one valuation domain with quotient field . and . + ..[.]. is a discrete rank two valuation domain with the same quotient field as ., namely, .(.). In , the purpose is to show that for each pair of positive integers . and . where . + l<

nitric-oxide 发表于 2025-3-25 18:43:12

http://reply.papertrans.cn/67/6670/666985/666985_24.png

Oafishness 发表于 2025-3-25 21:20:57

http://reply.papertrans.cn/67/6670/666985/666985_25.png

CLAN 发表于 2025-3-26 02:55:40

http://reply.papertrans.cn/67/6670/666985/666985_26.png

蜈蚣 发表于 2025-3-26 07:42:22

Commutative Rings of Dimension 0,zero-dimensional ring, the subject of our Section 5. This paper contains an account of some of the work that has been done in the area of zero-dimensional commutative rings since the publication of Arapovic’s papers.

忘川河 发表于 2025-3-26 09:23:46

Mori Domains,n the non-local case. A proof of the Mori-Nagata theorem close to the spirit of the present paper is that given by J.Querré and based on a result of Matijévic on the global transform (cf. e.g. ).

相一致 发表于 2025-3-26 13:25:44

http://reply.papertrans.cn/67/6670/666985/666985_29.png

Anthology 发表于 2025-3-26 20:33:29

http://reply.papertrans.cn/67/6670/666985/666985_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Non-Noetherian Commutative Ring Theory; Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div