冰冻 发表于 2025-3-21 16:29:03

书目名称Non-Convex Multi-Objective Optimization影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0666876<br><br>        <br><br>书目名称Non-Convex Multi-Objective Optimization读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0666876<br><br>        <br><br>

Dawdle 发表于 2025-3-21 20:41:04

Panos M. Pardalos,Antanas Žilinskas,Julius ŽilinskSummarizes non-convex multi-objective optimization problems and methods.Supplies comprehensive coverage, theoretical background, and examples of practical applications.Explains several directions of m

烤架 发表于 2025-3-22 00:39:23

http://reply.papertrans.cn/67/6669/666876/666876_3.png

nauseate 发表于 2025-3-22 07:01:43

http://reply.papertrans.cn/67/6669/666876/666876_4.png

Gentry 发表于 2025-3-22 10:35:46

Springer Optimization and Its Applicationshttp://image.papertrans.cn/n/image/666876.jpg

祸害隐伏 发表于 2025-3-22 14:36:03

http://reply.papertrans.cn/67/6669/666876/666876_6.png

MAOIS 发表于 2025-3-22 19:49:46

Scalarizatione reduction of a problem of multi-objective optimization to a single-objective optimization one normally is called scalarization. To find a discrete representation of the set of Pareto optimal solutions, a sequence of single-objective optimization problems should be solved, and they should hold the

Enliven 发表于 2025-3-22 21:23:07

http://reply.papertrans.cn/67/6669/666876/666876_8.png

LARK 发表于 2025-3-23 03:36:34

http://reply.papertrans.cn/67/6669/666876/666876_9.png

MELD 发表于 2025-3-23 06:45:52

Multi-Objective Branch and Boundt and discard sets of feasible decisions which cannot contain optimal decisions. The search process can be illustrated as a search tree with the root corresponding to the search space and branches corresponding to its subsets. An iteration of the algorithm processes a node in the search tree that re
页: [1] 2 3 4 5
查看完整版本: Titlebook: Non-Convex Multi-Objective Optimization; Panos M. Pardalos,Antanas Žilinskas,Julius Žilinsk Book Aug 20171st edition Springer Internationa