Combat 发表于 2025-3-21 18:26:05
书目名称Non-Additive Measure and Integral影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0666840<br><br> <br><br>书目名称Non-Additive Measure and Integral读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0666840<br><br> <br><br>举止粗野的人 发表于 2025-3-21 20:25:21
http://reply.papertrans.cn/67/6669/666840/666840_2.pnginsipid 发表于 2025-3-22 01:22:18
Construction of Measures using Topology,ciently many compact sets allows to construct broad classes of measures starting with finitely additive set functions which are regular, i.e. compatible with the given topology. On the real line, essentially these are the Lebesgue-Stieltjes measures. The main idea of this construction generalizes tocloture 发表于 2025-3-22 05:29:31
Distribution Functions, Measurability and Comonotonicity of Functions, the next chapter, the integral. No measurability requirements have to be imposed on the function if the set function is defined on the whole power set. For many questions this can be supposed but for some topics (Radon-Nikodym-Theorem, conditional expectation) set functions with restricted domainsbourgeois 发表于 2025-3-22 09:39:53
http://reply.papertrans.cn/67/6669/666840/666840_5.png修正案 发表于 2025-3-22 13:38:22
The Symmetric Integral,tions. The alternative integral to be defined here, coincides with the usual integral in all cases of additive set functions. For nonadditive set functions our old integral and the new one differ in two relevant points: asymmetry is replaced by symmetry and comonotonic additivity is lost for functioSemblance 发表于 2025-3-22 19:15:18
http://reply.papertrans.cn/67/6669/666840/666840_7.png绝缘 发表于 2025-3-23 00:13:11
Nullfunctions and the Lebesgue Spaces Lp, in the σ-additive theory) there are functions, not identically zero, having norm nought. Those are the nullfunctions, we start with. Then the Lebesgue space ..(.) of a submodular . is shown to be a normed linear space and to be a Banach space if . is continuous from below. These results translate t慢跑鞋 发表于 2025-3-23 04:43:40
http://reply.papertrans.cn/67/6669/666840/666840_9.pngEsalate 发表于 2025-3-23 06:57:56
Densities and the Radon-Nikodym Theorem,is absolutely continuous with respect to ., . ≪ .. In case of measures the condition . ≪ . is also sufficient for . having a density. This is the important Radon-Nikodym theorem. Closely related to these questions is the problem of representing a given functional on a function space through an integ