Lampoon 发表于 2025-3-21 17:40:08

书目名称New Approaches to Circle Packing in a Square影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0664806<br><br>        <br><br>书目名称New Approaches to Circle Packing in a Square读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0664806<br><br>        <br><br>

整顿 发表于 2025-3-21 22:34:59

http://reply.papertrans.cn/67/6649/664806/664806_2.png

HERTZ 发表于 2025-3-22 01:00:23

http://reply.papertrans.cn/67/6649/664806/664806_3.png

吵闹 发表于 2025-3-22 06:03:57

Book 2007em reveals itself to be an interesting challenge of discrete and computational geometry with all its surprising structural forms and regularities. This book summarizes results achieved in solving the circle packing problem over the past few years, providing the reader with a comprehensive view of bo

harangue 发表于 2025-3-22 11:55:22

http://reply.papertrans.cn/67/6649/664806/664806_5.png

单片眼镜 发表于 2025-3-22 12:57:21

Interval Methods for Verifying Structural Optimality,prove that the currently best-known packing . result in optimal packings and moreover apart from symmetric configurations and the movement of well-identified free circles, these are the only optimal packings . The required statements will be verified with mathematical rigor using interval arithmetic tools.

结构 发表于 2025-3-22 18:49:37

http://reply.papertrans.cn/67/6649/664806/664806_7.png

Introvert 发表于 2025-3-23 00:18:03

http://reply.papertrans.cn/67/6649/664806/664806_8.png

女上瘾 发表于 2025-3-23 01:29:35

http://reply.papertrans.cn/67/6649/664806/664806_9.png

Bravado 发表于 2025-3-23 09:04:52

P. G. Szabó,M. Cs. Markót,I. GarcíaSummarizes the results of recent years in circle packing into the unit square, emphasizing the algorithmic and optimization details.Reports the source codes that have provided the new results.Includes
页: [1] 2 3 4 5
查看完整版本: Titlebook: New Approaches to Circle Packing in a Square; With Program Codes P. G. Szabó,M. Cs. Markót,I. García Book 2007 Springer-Verlag US 2007 SOIA