本义 发表于 2025-3-21 19:42:31
书目名称Motivic Integration影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0639637<br><br> <br><br>书目名称Motivic Integration读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0639637<br><br> <br><br>使虚弱 发表于 2025-3-21 21:11:07
Motivic Integration978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505Xsuperfluous 发表于 2025-3-22 01:39:02
http://reply.papertrans.cn/64/6397/639637/639637_3.pngterazosin 发表于 2025-3-22 04:39:21
http://reply.papertrans.cn/64/6397/639637/639637_4.pngcartilage 发表于 2025-3-22 10:46:19
Antoine Chambert-Loir,Johannes Nicaise,Julien SebaIncludes the first complete treatment of geometric motivic integration in a monograph.Covers the construction of arc schemes and Greenberg schemes.Provides a complete discussion of questions concernin遵循的规范 发表于 2025-3-22 15:24:37
0743-1643 duate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since. .978-1-4939-9315-4978-1-4939-7887-8Series ISSN 0743-1643 Series E-ISSN 2296-505XCRACY 发表于 2025-3-22 19:43:40
http://reply.papertrans.cn/64/6397/639637/639637_7.png桶去微染 发表于 2025-3-23 00:38:33
0743-1643 chemes.Provides a complete discussion of questions concerninThis monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser an沙漠 发表于 2025-3-23 04:00:10
Book 2018oted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck riCriteria 发表于 2025-3-23 06:07:27
http://reply.papertrans.cn/64/6397/639637/639637_10.png