complicated 发表于 2025-3-21 16:44:34

书目名称Metric and Differential Geometry影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0632471<br><br>        <br><br>书目名称Metric and Differential Geometry读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0632471<br><br>        <br><br>

ASTER 发表于 2025-3-21 21:39:06

http://reply.papertrans.cn/64/6325/632471/632471_2.png

说不出 发表于 2025-3-22 01:08:40

http://reply.papertrans.cn/64/6325/632471/632471_3.png

烦忧 发表于 2025-3-22 08:22:20

http://reply.papertrans.cn/64/6325/632471/632471_4.png

RENIN 发表于 2025-3-22 10:54:50

How Riemannian Manifolds Converge of metric spaces, convergence of metric measure spaces, intrinsic Flat convergence of integral current spaces, and ultralimits of metric spaces. We close with a speculative section addressing possible notions of intrinsic varifold convergence, convergence of Lorentzian manifolds and area convergence.

洁净 发表于 2025-3-22 15:00:39

http://reply.papertrans.cn/64/6325/632471/632471_6.png

Pert敏捷 发表于 2025-3-22 17:20:43

Space of Kähler Metrics (V) – Kähler Quantizationas non-positive curvature. There is associated to ℋ a sequence of finite-dimensional symmetric spaces. of non-compact Type. We prove that ℋ is the limit of .as metric spaces in certain sense. As applications, this provides more geometric proofs of certain known geometric properties of the space ℋ.

品尝你的人 发表于 2025-3-22 23:29:21

Split Special Lagrangian Geometrygeometry was first introduced. The natural setting is provided by doing geometry with the complex numbers . replaced by the double numbers ., where . with – = -1 is replaced by .with .. A rather surprising amount of complex geometry carries over, almost untouched, and this has been the subject of ma

滑稽 发表于 2025-3-23 01:33:53

http://reply.papertrans.cn/64/6325/632471/632471_9.png

失误 发表于 2025-3-23 05:46:21

http://reply.papertrans.cn/64/6325/632471/632471_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Metric and Differential Geometry; The Jeff Cheeger Ann Xianzhe Dai,Xiaochun Rong Conference proceedings 2012 Springer Basel 2012 K-theory i