无感觉 发表于 2025-3-21 16:06:23

书目名称Medical Image Learning with Limited and Noisy Data影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0629277<br><br>        <br><br>书目名称Medical Image Learning with Limited and Noisy Data读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0629277<br><br>        <br><br>

血统 发表于 2025-3-21 22:05:52

Medical Image Learning with Limited and Noisy Data978-3-031-16760-7Series ISSN 0302-9743 Series E-ISSN 1611-3349

发表于 2025-3-22 03:48:40

http://reply.papertrans.cn/63/6293/629277/629277_3.png

PHON 发表于 2025-3-22 05:17:43

Conference proceedings 2022with MICCAI 2022. The conference was held in Singapore. For this workshop, 22 papers from 54 submissions were accepted for publication. They selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data..

Medicare 发表于 2025-3-22 11:13:12

https://doi.org/10.1007/978-3-031-16760-7Computer Science; Informatics; Conference Proceedings; Research; Applications

痛苦一下 发表于 2025-3-22 14:30:01

http://reply.papertrans.cn/63/6293/629277/629277_6.png

寄生虫 发表于 2025-3-22 19:51:07

Heatmap Regression for Lesion Detection Using Pointwise Annotationsection show our point-based method performs competitively compared to training on expensive segmentation labels. Finally, our detection model provides a suitable pre-training for segmentation. When fine-tuning on only 17 segmentation samples, we achieve comparable performance to training with the full dataset.

Ferritin 发表于 2025-3-23 00:19:04

http://reply.papertrans.cn/63/6293/629277/629277_8.png

朋党派系 发表于 2025-3-23 01:51:08

http://reply.papertrans.cn/63/6293/629277/629277_9.png

construct 发表于 2025-3-23 06:44:42

0302-9743selected papers focus on the challenges and limitations of current deep learning methods applied to limited and noisy medical data and present new methods for training models using such imperfect data..978-3-031-16759-1978-3-031-16760-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Medical Image Learning with Limited and Noisy Data; First International Ghada Zamzmi,Sameer Antani,Zhiyun Xue Conference proceedings 2022