DOLT 发表于 2025-3-23 13:37:59

http://reply.papertrans.cn/63/6278/627749/627749_11.png

overture 发表于 2025-3-23 14:49:40

http://reply.papertrans.cn/63/6278/627749/627749_12.png

有罪 发表于 2025-3-23 19:09:13

https://doi.org/10.1007/978-1-4684-0093-9Groups; Matrizengruppe; algebra; clifford algebra; field; group theory; homomorphism; lie algebra; lie group

有其法作用 发表于 2025-3-24 02:02:18

http://reply.papertrans.cn/63/6278/627749/627749_14.png

jungle 发表于 2025-3-24 04:08:37

http://reply.papertrans.cn/63/6278/627749/627749_15.png

GRIEF 发表于 2025-3-24 08:09:13

Homomorphisms,We are going to define our first invariant of a matrix group, its .. Matrix groups whose dimensions are different can’t be isomorphic. The dimension of a matrix group is going to be the dimension of its space of tangent vectors (a vector space), so we first define these.

arboretum 发表于 2025-3-24 10:40:33

http://reply.papertrans.cn/63/6278/627749/627749_17.png

词根词缀法 发表于 2025-3-24 15:42:50

SO(3) and Sp(1),We have seen that Sp(1), which is all quaternions of unit length, is just the unit 3-sphere in R. ( = ℍ). Also we have seen that dim . So dimension won’t distinguish S. from SO(3), and, for all we know now, they might be isomorphic. In this section we define and study an “almost isomorphism” between them.

GREEN 发表于 2025-3-24 22:04:30

http://reply.papertrans.cn/63/6278/627749/627749_19.png

领先 发表于 2025-3-24 23:21:17

http://reply.papertrans.cn/63/6278/627749/627749_20.png
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Matrix Groups; Morton L. Curtis Textbook 19791st edition Springer Science+Business Media New York 1979 Groups.Matrizengruppe.algebra.cliff