笔记 发表于 2025-3-21 16:30:57

书目名称Matrix Analysis影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0627736<br><br>        <br><br>书目名称Matrix Analysis读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0627736<br><br>        <br><br>

昆虫 发表于 2025-3-21 20:27:59

Perturbation of Spectral Subspaces of Normal Matrices,their eigenvectors remain stubbornly apart. Note, however, that the . that these two eigenvectors of . and . span are identical. In this chapter we will see that interesting and useful perturbation bounds may be obtained for eigenspaces corresponding to closely bunched eigenvalues of normal matrices.

INTER 发表于 2025-3-22 02:33:32

Spectral Variation of Normal Matrices,orem: if . are two Hermitian matrices, then..In turn, this inequality is a special case of the inequality (IV.62), which says that if Eig↓ (.) denotes the diagonal matrix with entries λ↓. (.) down its diagonal, then we have for all Hermitian matrices . and for all unitarily invariant norms.

Invigorate 发表于 2025-3-22 06:58:30

Spectral Variation of Nonnormal Matrices,quality .(σ(.), σ(.)) ≤ 3|| .|| (Theorem VII.4.1). If one of the matrices . is Hermitian and the other is arbitrary, then we can only have an inequality of the form .(σ(.), σ(.)) ≤ .)||. — B||, where .) is a constant that grows like log . (Problems VI.8.8 and VI.8.9).

Strength 发表于 2025-3-22 11:29:00

http://reply.papertrans.cn/63/6278/627736/627736_5.png

倔强不能 发表于 2025-3-22 14:35:49

http://reply.papertrans.cn/63/6278/627736/627736_6.png

ineffectual 发表于 2025-3-22 20:22:47

http://reply.papertrans.cn/63/6278/627736/627736_7.png

CLAMP 发表于 2025-3-22 22:17:18

978-1-4612-6857-4Springer-Verlag Berlin Heidelberg 1997

恶意 发表于 2025-3-23 03:16:53

Matrix Analysis978-1-4612-0653-8Series ISSN 0072-5285 Series E-ISSN 2197-5612

Subjugate 发表于 2025-3-23 06:52:06

Graduate Texts in Mathematicshttp://image.papertrans.cn/m/image/627736.jpg
页: [1] 2 3 4 5
查看完整版本: Titlebook: Matrix Analysis; Rajendra Bhatia Textbook 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.approximation.calculus.Eigenvalue.exponentia