联系 发表于 2025-3-21 19:34:53
书目名称Making Work影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0621776<br><br> <br><br>书目名称Making Work读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0621776<br><br> <br><br>Wallow 发表于 2025-3-21 21:28:37
ence. More workers are more educated now than ever before, and more and more people seem to look to work as a personal outlet, rather than just a source of income. We saw our small, egalitarian work organizations as providing settings in which people were especially likely to v vi PREFACE find work satisfyi978-1-4684-4447-6978-1-4684-4445-2Hypomania 发表于 2025-3-22 01:55:58
http://reply.papertrans.cn/63/6218/621776/621776_3.png反叛者 发表于 2025-3-22 06:46:52
William Rondo,Lisa Peattie,Russ Tanner,Joan Wofford,Peter Linkow,Sharon Moriearty flexible and can naturally account for spatially and temporally varying dynamics of changes. We demonstrate a preliminary application of our non-parametric method on the modelling of within-subject structural changes in the context of longitudinal analysis in Alzheimer’s disease. In particular we smanifestation 发表于 2025-3-22 08:59:43
William Ronco,Lisa Peattie,Russ Tanner,Joan Wofford,Peter Linkow,Sharon Morieartyal feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency anDungeon 发表于 2025-3-22 14:10:14
William Ronco,Lisa Peattie,Russ Tanner,Joan Wofford,Peter Linkow,Sharon Morieartyto almost 88 %, compared to less than 86 % using a single kernel representing the whole brain. Moreover, interpretability of the classifier is also improved, as the optimal kernel weights are sparse and give an indication of the importance of each brain region in separating the two groups.ACTIN 发表于 2025-3-22 18:33:56
William Ronco,Lisa Peattie,Russ Tanner,Joan Wofford,Peter Linkow,Sharon Morieartynction with the 32ndInternational Conference on Machine Learning, ICML 2015...The 10 papers presented in this volume were carefullyreviewed and selected for inclusion in the book. The papers communicate thespecific needs and nuances of medical imaging to the machine learning communitywhile exposingCamouflage 发表于 2025-3-22 22:43:59
Joan Wofford flexible and can naturally account for spatially and temporally varying dynamics of changes. We demonstrate a preliminary application of our non-parametric method on the modelling of within-subject structural changes in the context of longitudinal analysis in Alzheimer’s disease. In particular we s未完成 发表于 2025-3-23 03:21:18
With Russ Tannerons. The approach is based on training Gaussian process models of variable complexity by the evolution of the physical functions. We show that, as the complexity of the models increases, they become capable of predicting new transitions. We also show that, where the evolution of the physical functioAsperity 发表于 2025-3-23 05:51:54
http://reply.papertrans.cn/63/6218/621776/621776_10.png