FERN 发表于 2025-3-21 18:04:19

书目名称Machine Learning: ECML 2007影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620755<br><br>        <br><br>书目名称Machine Learning: ECML 2007读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620755<br><br>        <br><br>

Headstrong 发表于 2025-3-21 22:02:50

Neighborhood-Based Local Sensitivitycal sensitivity. The resulting estimates demonstrate improved performance when used in classifier combination and classifier recalibration as well as being potentially useful in active learning and a variety of other problems.

最有利 发表于 2025-3-22 04:11:26

http://reply.papertrans.cn/63/6208/620755/620755_3.png

bronchodilator 发表于 2025-3-22 04:46:59

Level Learning Set: A Novel Classifier Based on Active Contour Modelss in its ability to directly construct complex decision boundaries, and in better knowledge representation. Various experimental results including comparisons to existing machine learning algorithms are presented, and the advantages of the proposed approach are discussed.

配偶 发表于 2025-3-22 09:49:59

Learning Partially Observable Markov Models from First Passage Timesransitions with the lowest expected passage times are trimmed off from the model. Practical evaluations on artificially generated data and on DNA sequence modeling show the benefits over Bayesian model induction or EM estimation of ergodic models with transition trimming.

output 发表于 2025-3-22 14:18:45

http://reply.papertrans.cn/63/6208/620755/620755_6.png

Demonstrate 发表于 2025-3-22 19:25:12

http://reply.papertrans.cn/63/6208/620755/620755_7.png

推延 发表于 2025-3-23 00:37:09

http://reply.papertrans.cn/63/6208/620755/620755_8.png

Oafishness 发表于 2025-3-23 05:24:33

http://reply.papertrans.cn/63/6208/620755/620755_9.png

CORD 发表于 2025-3-23 07:22:08

Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Srmative, if known. An evaluation on text data shows that this provides an effective criterion for identifying constraints, leading to a reduction in the level of supervision required to direct a clustering algorithm to an accurate solution.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Machine Learning: ECML 2007; 18th European Confer Joost N. Kok,Jacek Koronacki,Andrzej Skowron Conference proceedings 2007 Springer-Verlag