民俗学 发表于 2025-3-21 19:32:41

书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620737<br><br>        <br><br>书目名称Machine Learning, Optimization, and Data Science读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620737<br><br>        <br><br>

Archipelago 发表于 2025-3-21 23:51:57

http://reply.papertrans.cn/63/6208/620737/620737_2.png

生锈 发表于 2025-3-22 04:10:00

http://reply.papertrans.cn/63/6208/620737/620737_3.png

charisma 发表于 2025-3-22 07:52:59

Feature Based Multivariate Data Imputation,ent experimental settings: ., . and . with 25% missing data in the test set over five-fold cross validation. Furthermore, the proposed model has straightforward implementation and can easily incorporate other imputation techniques.

Nausea 发表于 2025-3-22 11:25:33

Information-Theoretic Feature Selection Using High-Order Interactions,erived from information theory. We show that our method is able to find interactions which remain undetected when using standard methods. We prove some theoretical properties of the introduced criterion and interaction information.

辩论 发表于 2025-3-22 14:05:52

http://reply.papertrans.cn/63/6208/620737/620737_6.png

共同时代 发表于 2025-3-22 21:02:32

Generating Term Weighting Schemes Through Genetic Programming, generates a new TWS based on the performance of the learning method. We experience the generated TWSs on three well-known benchmarks. Our study shows that even early generated formulas are quite competitive with the state-of-the-art TWSs and even in some cases outperform them.

滔滔不绝的人 发表于 2025-3-23 01:12:52

Adaptive Dimensionality Reduction in Multiobjective Optimization with Multiextremal Criteria,ion accelerating the search is presented. Efficiency of the proposed approach is demonstrated on the base of representative computational experiment on a test class of bi-criterial MCO problems with essentially multiextremal criteria.

instill 发表于 2025-3-23 04:33:21

Optimization of Neural Network Training with ELM Based on the Iterative Hybridization of Differentiaining/Testing) obtains the best results, followed by DECC-G and MOS. All three algorithms obtain better results than M-ELM. The experimentation was carried out on 38 classification problems recognized by the scientific community, while Friedman and Wilcoxon nonparametric statistical tests support the results.

Ingrained 发表于 2025-3-23 08:34:40

http://reply.papertrans.cn/63/6208/620737/620737_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Machine Learning, Optimization, and Data Science; 4th International Co Giuseppe Nicosia,Panos Pardalos,Vincenzo Sciacca Conference proceedi