memoir 发表于 2025-3-21 16:44:22
书目名称Machine Learning in Medical Imaging影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620686<br><br> <br><br>书目名称Machine Learning in Medical Imaging读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620686<br><br> <br><br>indecipherable 发表于 2025-3-21 22:48:48
Conference proceedings 2019ICCAI 2019, in Shenzhen, China, in October 2019. .The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. .They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt wInkling 发表于 2025-3-22 01:34:50
Conference proceedings 2019ng, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. .Ardent 发表于 2025-3-22 08:22:46
http://reply.papertrans.cn/63/6207/620686/620686_4.pngosculate 发表于 2025-3-22 09:19:06
http://reply.papertrans.cn/63/6207/620686/620686_5.pngMisnomer 发表于 2025-3-22 13:42:57
WSI-Net: Branch-Based and Hierarchy-Aware Network for Segmentation and Classification of Breast Histhe pathology hierarchical relationships between pixels in each patch. By aggregating patch segmentation results from WSI-Net, we generate a segmentation map for the WSI and extract its morphological features for WSI-level classification. Experimental results show that our WSI-Net can be ., . and . on our benchmark dataset.Cryptic 发表于 2025-3-22 20:07:15
http://reply.papertrans.cn/63/6207/620686/620686_7.png信条 发表于 2025-3-22 21:16:25
MSAFusionNet: Multiple Subspace Attention Based Deep Multi-modal Fusion Network,ial multi-modal input images, and (3) a densely-dilated U-Net as the encoder-decoder backbone for image segmentation. Experiments on ISLES 2018 data set have shown that MSAFusionNet achieves the state-of-the-art segmentation accuracy.CURT 发表于 2025-3-23 01:21:53
http://reply.papertrans.cn/63/6207/620686/620686_9.pngrectocele 发表于 2025-3-23 08:18:17
http://reply.papertrans.cn/63/6207/620686/620686_10.png