巡洋 发表于 2025-3-21 19:50:16

书目名称Machine Learning in Document Analysis and Recognition影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0620668<br><br>        <br><br>书目名称Machine Learning in Document Analysis and Recognition读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0620668<br><br>        <br><br>

DEMUR 发表于 2025-3-21 23:48:47

Book 2008th ?rst papers dating back to the 1960’s, DAR is a mature but still gr- ing research?eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this ?eld, while broader DAR techniques are nowadays studied

Relinquish 发表于 2025-3-22 00:44:20

http://reply.papertrans.cn/63/6207/620668/620668_3.png

adequate-intake 发表于 2025-3-22 07:22:43

Classification and Learning Methods for Character Recognition: Advances and Remaining Problems,pplied to character recognition, with a special section devoted to the classification of large category set. We then discuss the characteristics of these methods, and discuss the remaining problems in character recognition that can be potentially solved by machine learning methods.

客观 发表于 2025-3-22 12:15:59

http://reply.papertrans.cn/63/6207/620668/620668_5.png

maudtin 发表于 2025-3-22 13:36:05

http://reply.papertrans.cn/63/6207/620668/620668_6.png

aerial 发表于 2025-3-22 17:24:09

Off-line Writer Identification and Verification Using Gaussian Mixture Models,tification and the verification task. Three types of confidence measures are defined on the scores: simple score based, cohort model based, and world model based confidence measures. Experiments demonstrate a very good performance of the system on the identification and the verification task.

ROOF 发表于 2025-3-22 21:35:23

http://reply.papertrans.cn/63/6207/620668/620668_8.png

Militia 发表于 2025-3-23 05:12:36

http://reply.papertrans.cn/63/6207/620668/620668_9.png

江湖骗子 发表于 2025-3-23 06:59:06

Structure Extraction in Printed Documents Using Neural Approaches,scussed in general terms: data-driven and model-driven. In the latter, some specific approaches like rule-based or formal grammar are usually studied on very stereotyped documents providing honest results, while in the former artificial neural networks are often considered for small patterns with go
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Machine Learning in Document Analysis and Recognition; Simone Marinai,Hiromichi Fujisawa Book 2008 Springer-Verlag Berlin Heidelberg 2008