手套
发表于 2025-3-21 17:13:24
书目名称Machine Learning for Engineers影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0620619<br><br> <br><br>书目名称Machine Learning for Engineers读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0620619<br><br> <br><br>
Facet-Joints
发表于 2025-3-22 00:09:45
http://image.papertrans.cn/m/image/620619.jpg
打包
发表于 2025-3-22 03:19:17
https://doi.org/10.1007/978-3-030-70388-2supervised learning; unsupervised learning; Bayesian statistics; linear models; tree-based models; deep n
NOMAD
发表于 2025-3-22 07:43:14
978-3-030-70390-5Springer Nature Switzerland AG 2021
Consequence
发表于 2025-3-22 09:09:38
Textbook 2021merging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates th
STEER
发表于 2025-3-22 16:49:59
http://reply.papertrans.cn/63/6207/620619/620619_6.png
职业拳击手
发表于 2025-3-22 19:13:27
Recurrent Neural Networks for Time Series Dataut sequences are long. We then develop a more sophisticated network, the long short-term memory (LSTM) network to deal with longer sequences of data. Examples include predicting the frequency and shift of a signal and predicting the behavior of a cart-mounted pendulum
离开可分裂
发表于 2025-3-23 00:24:27
http://reply.papertrans.cn/63/6207/620619/620619_8.png
可卡
发表于 2025-3-23 04:15:56
http://reply.papertrans.cn/63/6207/620619/620619_9.png
VERT
发表于 2025-3-23 08:55:56
Finding Structure Within a Data Set: Data Reduction and Clustering clusters in the data set are found using distance measures in the independent variables, and t-SNE, where high-dimensional data are mapped into a low-dimensional (2 or 3 dimensions) data set to visualize the clusters. We close this chapter by applying supervised learning methods to hyper-spectral imaging of plant leaves.