MASS 发表于 2025-3-21 19:28:13
书目名称Machine Learning and Knowledge Discovery in Databases: Research Track影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0620554<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases: Research Track读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0620554<br><br> <br><br>habitat 发表于 2025-3-21 22:41:23
http://reply.papertrans.cn/63/6206/620554/620554_2.png任意 发表于 2025-3-22 01:37:49
Exploring the Training Robustness of Distributional Reinforcement Learning Against Noisy State Obserimal actions or even collapse while training. In this paper, we study the training robustness of distributional Reinforcement Learning (RL), a class of state-of-the-art methods that estimate the whole distribution, as opposed to only the expectation, of the total return. Firstly, we validate the con令人心醉 发表于 2025-3-22 06:57:30
http://reply.papertrans.cn/63/6206/620554/620554_4.png自由职业者 发表于 2025-3-22 10:51:24
Label Shift Quantification with Robustness Guarantees via Distribution Feature Matchingframework, distribution feature matching (DFM), that recovers as particular instances various estimators introduced in previous literature. We derive a general performance bound for DFM procedures, improving in several key aspects upon previous bounds derived in particular cases. We then extend thisPeculate 发表于 2025-3-22 16:13:47
http://reply.papertrans.cn/63/6206/620554/620554_6.pngAntioxidant 发表于 2025-3-22 21:04:31
DualMatch: Robust Semi-supervised Learning with Dual-Level Interactiong methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the clas使闭塞 发表于 2025-3-22 21:23:20
http://reply.papertrans.cn/63/6206/620554/620554_8.pngCrepitus 发表于 2025-3-23 02:15:33
Deep Imbalanced Time-Series Forecasting via Local Discrepancy Densitypite their scarce occurrences in the training set (., data imbalance), abrupt changes incur loss that significantly contributes to the total loss (., heteroscedasticity). Therefore, they act as noisy training samples and prevent the model from learning generalizable patterns, namely the normal stateinstate 发表于 2025-3-23 09:05:03
http://reply.papertrans.cn/63/6206/620554/620554_10.png