航天飞机 发表于 2025-3-21 17:36:39
书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0620498<br><br> <br><br>书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0620498<br><br> <br><br>反对 发表于 2025-3-21 23:00:12
Jianing Zhao,Daniel M. Runfola,Peter Kempergaben mit einem mittleren Schwierigkeitsgrad wählen. Versucht beispielsweise ein Jugendlicher sportliche Leistungen im Hochsprung zu erbringen, so kann er die Sprunglatte unterschiedlich hoch auflegen. Bei einem realistischen Anspruchsniveau wird er eine Höhe wählen, die ihm Anstrengung abverlangt,Folklore 发表于 2025-3-22 01:58:12
http://reply.papertrans.cn/63/6205/620498/620498_3.png分发 发表于 2025-3-22 05:27:50
http://reply.papertrans.cn/63/6205/620498/620498_4.png减去 发表于 2025-3-22 08:58:32
http://reply.papertrans.cn/63/6205/620498/620498_5.png不规则的跳动 发表于 2025-3-22 16:00:01
Automatic Detection and Recognition of Individuals in Patterned Speciession (or Linear SVM) classifier to recognize the individuals. We primarily test and evaluate our framework on a camera trap tiger image dataset that contains images that vary in overall image quality, animal pose, scale and lighting. We also evaluate our recognition system on zebra and jaguar imagesCLASH 发表于 2025-3-22 19:05:52
http://reply.papertrans.cn/63/6205/620498/620498_7.png委派 发表于 2025-3-22 21:38:06
CREST - Risk Prediction for Clostridium Difficile Infection Using Multimodal Data Miningns these features into three sets: time-invariant, time-variant, and temporal synopsis features. CREST then learns classifiers for each set of features, evaluating their relative effectiveness. Lastly, CREST employs a second-order meta learning process to ensemble these classifiers for optimized est旋转一周 发表于 2025-3-23 03:35:29
DC-Prophet: Predicting Catastrophic Machine Failures in ,ata,entersF.-score (The ideal value of F.-score is 1, indicating perfect predictions. Also, the intuition behind F.-score is to value “Recall” about three times more than “Precision” [.].) of 0.88 (out of 1). On average, DC-Prophet outperforms other classical machine learning methods by 39.45% in F.-score.Vertical 发表于 2025-3-23 08:53:23
Event Detection and Summarization Using Phrase Networkas a clustering of high-frequency phrases extracted from text. All trending topics are then identified based on temporal spikes of the phrase cluster frequencies. PhraseNet thus filters out high-confidence events from other trending topics using number of peaks and variance of peak intensity. We eva