Endometrium 发表于 2025-3-23 13:28:03
http://reply.papertrans.cn/59/5878/587717/587717_11.pngexclusice 发表于 2025-3-23 14:08:07
Hélène Esnault(Over)view on the relation between local systems in complex algebraic geometry and in arithmetic geometry.Discusses deep conjectures that are presently out of reach.Proposes sub-conjectures that mightMalcontent 发表于 2025-3-23 21:14:43
Lecture Notes in Mathematicshttp://image.papertrans.cn/l/image/587717.jpg柔美流畅 发表于 2025-3-23 22:34:12
https://doi.org/10.1007/978-3-031-40840-3Motives; Local Systems; Hodge Theory; p-adic Hodge Theory; Algebraic Geometry; Complex Local Systems; l-adhazard 发表于 2025-3-24 04:16:25
http://reply.papertrans.cn/59/5878/587717/587717_15.png慎重 发表于 2025-3-24 08:35:24
Lecture 5: Interlude on Some Difference Between the Fundamental Groups in Characteristic 0 and ,See the Abstract of Chap. .: we show here the existence of an obstruction to lift a smooth (quasi-)projective variety defined over an algebraically closed field . of characteristic . to characteristic 0 which relies purely on the shape of its (tame) fundamental group.朴素 发表于 2025-3-24 14:10:02
http://reply.papertrans.cn/59/5878/587717/587717_17.pngDiaphragm 发表于 2025-3-24 16:08:14
http://reply.papertrans.cn/59/5878/587717/587717_18.pngnarcissism 发表于 2025-3-24 19:50:41
,Lecture 3: Malčev-Grothendieck’s Theorem, Its Variants in Characteristic ,, Gieseker’s Conjecture, lgebraic completion. We recall Grothendieck’s version of it formulated with .-modules using the Riemann-Hilbert correspondence, then the Gieseker conjecture, its counterpart in characteristic ., its solution and generalizations.治愈 发表于 2025-3-25 02:11:34
http://reply.papertrans.cn/59/5878/587717/587717_20.png