去是公开 发表于 2025-3-21 18:00:44
书目名称Linear Partial Differential Operators影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0586374<br><br> <br><br>书目名称Linear Partial Differential Operators读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0586374<br><br> <br><br>蜡烛 发表于 2025-3-22 00:12:07
http://reply.papertrans.cn/59/5864/586374/586374_2.pngfigurine 发表于 2025-3-22 02:00:57
http://reply.papertrans.cn/59/5864/586374/586374_3.png过剩 发表于 2025-3-22 05:59:06
http://reply.papertrans.cn/59/5864/586374/586374_4.pngnoxious 发表于 2025-3-22 10:36:10
Linear Partial Differential Operators978-3-642-46175-0Series ISSN 0072-7830 Series E-ISSN 2196-9701Colonoscopy 发表于 2025-3-22 15:38:43
The Cauchy problem (constant coefficients)To solve the Cauchy problem for a differential operator . (.) with data on a plane . = 0, where 0≠., means, roughly speaking, to find a solution . of the equation.where . is given, so that for another given function玉米棒子 发表于 2025-3-22 20:31:49
https://doi.org/10.1007/978-3-642-46175-0Finite; Operators; distribution; equation; function; functional analysis; partial differential equation; pa箴言 发表于 2025-3-22 23:56:59
Distribution theoryllowing chapters. The reader may thus consult . for a more detailed study of almost all topics discussed here. An exception is Definition 1.3.3 and the related Theorem 1.7.8, which are based on an idea of . (see also . and . ). In section 1.8 we have added a definition of distributiofodlder 发表于 2025-3-23 05:19:43
http://reply.papertrans.cn/59/5864/586374/586374_9.pngKaleidoscope 发表于 2025-3-23 05:55:41
http://reply.papertrans.cn/59/5864/586374/586374_10.png