transplantation 发表于 2025-3-28 17:05:36

http://reply.papertrans.cn/59/5863/586264/586264_41.png

保守 发表于 2025-3-28 19:26:09

Products of Linear Transformations,Let . and . be two linear transformations. We define the transformation . which consists of . followed by ., i.e., if . is any vector.We write . = . and we call ..

漫不经心 发表于 2025-3-29 02:58:38

http://reply.papertrans.cn/59/5863/586264/586264_43.png

放大 发表于 2025-3-29 05:30:48

Determinants,Let . be a linear transformation with matrix .. The quantity.is called the determinant of the matrix . and is denoted.Expressed in these terms, Theorem 2.4 states that . has an inverse if and only if . We shall see that the determinant gives us further information about the behavior of ..

细胞学 发表于 2025-3-29 08:48:08

http://reply.papertrans.cn/59/5863/586264/586264_45.png

比喻好 发表于 2025-3-29 13:11:07

http://reply.papertrans.cn/59/5863/586264/586264_46.png

空气 发表于 2025-3-29 17:12:17

Vector Geometry in 3-Space,Just as in the plane, we may use vectors to express the analytic geometry of 3-dimensional space.

动作谜 发表于 2025-3-29 22:52:58

http://reply.papertrans.cn/59/5863/586264/586264_48.png

宣称 发表于 2025-3-30 02:52:06

Sums and Products of Linear Transformations,If . and . are linear transformations, then we may define a new transformation . + . by the condition.Then by definition, (. + .)(. + .) = .(. + .) + .(. + .), and since . and . are linear transformations, this equals .(.) + .(.) + .(.) + .(.) = .(.) + .(.) + .(.) + .(.) = (. + .)(.) + (. + .)(.). Thus for every pair ., we have

intolerance 发表于 2025-3-30 06:20:26

http://reply.papertrans.cn/59/5863/586264/586264_50.png
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Linear Algebra Through Geometry; Thomas Banchoff,John Wermer Textbook 1992Latest edition Springer-Verlag New York, Inc. 1992 Eigenvalue.Li