transplantation 发表于 2025-3-28 17:05:36
http://reply.papertrans.cn/59/5863/586264/586264_41.png保守 发表于 2025-3-28 19:26:09
Products of Linear Transformations,Let . and . be two linear transformations. We define the transformation . which consists of . followed by ., i.e., if . is any vector.We write . = . and we call ..漫不经心 发表于 2025-3-29 02:58:38
http://reply.papertrans.cn/59/5863/586264/586264_43.png放大 发表于 2025-3-29 05:30:48
Determinants,Let . be a linear transformation with matrix .. The quantity.is called the determinant of the matrix . and is denoted.Expressed in these terms, Theorem 2.4 states that . has an inverse if and only if . We shall see that the determinant gives us further information about the behavior of ..细胞学 发表于 2025-3-29 08:48:08
http://reply.papertrans.cn/59/5863/586264/586264_45.png比喻好 发表于 2025-3-29 13:11:07
http://reply.papertrans.cn/59/5863/586264/586264_46.png空气 发表于 2025-3-29 17:12:17
Vector Geometry in 3-Space,Just as in the plane, we may use vectors to express the analytic geometry of 3-dimensional space.动作谜 发表于 2025-3-29 22:52:58
http://reply.papertrans.cn/59/5863/586264/586264_48.png宣称 发表于 2025-3-30 02:52:06
Sums and Products of Linear Transformations,If . and . are linear transformations, then we may define a new transformation . + . by the condition.Then by definition, (. + .)(. + .) = .(. + .) + .(. + .), and since . and . are linear transformations, this equals .(.) + .(.) + .(.) + .(.) = .(.) + .(.) + .(.) + .(.) = (. + .)(.) + (. + .)(.). Thus for every pair ., we haveintolerance 发表于 2025-3-30 06:20:26
http://reply.papertrans.cn/59/5863/586264/586264_50.png