不友善
发表于 2025-3-21 16:48:23
书目名称Lie Sphere Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0585714<br><br> <br><br>书目名称Lie Sphere Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0585714<br><br> <br><br>
TAG
发表于 2025-3-21 23:08:36
http://reply.papertrans.cn/59/5858/585714/585714_2.png
excrete
发表于 2025-3-22 04:04:12
0172-5939 r thorough examination of Lie sphere geometry and its applic.This book provides a clear and comprehensive modern treatment of Lie sphere geometry and its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of
袭击
发表于 2025-3-22 05:33:29
http://reply.papertrans.cn/59/5858/585714/585714_4.png
有罪
发表于 2025-3-22 09:37:49
Lie Sphere Transformations,This is followed by a treatment of Laguerre geometry in Section 3.4. Finally, in Section 3.5, we show that the Lie sphere group is generated by the union of the groups of Möbius and Laguerre. There we also describe the place of Euclidean, spherical and hyperbolic metric geometries within the context of these more general geometries.
招待
发表于 2025-3-22 13:25:10
https://doi.org/10.1007/978-0-387-74656-2Dimension; Grad; curvature; differential geometry; manifold; projective geometry
拍下盗公款
发表于 2025-3-22 19:42:54
Thomas E. CecilProvides the reader with all the necessary background to reach the frontiers of research in this area.Fills a gap in the literature; no other thorough examination of Lie sphere geometry and its applic
完整
发表于 2025-3-22 22:51:19
Universitexthttp://image.papertrans.cn/l/image/585714.jpg
红润
发表于 2025-3-23 03:38:33
http://reply.papertrans.cn/59/5858/585714/585714_9.png
能量守恒
发表于 2025-3-23 07:02:55
Legendre Submanifolds,In this chapter, we develop the framework necessary to study submanifolds within the context of Lie sphere geometry.