佯攻 发表于 2025-3-21 17:21:13

书目名称Lie Groups影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0585693<br><br>        <br><br>书目名称Lie Groups读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0585693<br><br>        <br><br>

Capitulate 发表于 2025-3-21 23:24:31

http://reply.papertrans.cn/59/5857/585693/585693_2.png

情爱 发表于 2025-3-22 01:11:30

http://reply.papertrans.cn/59/5857/585693/585693_3.png

seroma 发表于 2025-3-22 07:28:36

http://reply.papertrans.cn/59/5857/585693/585693_4.png

Pepsin 发表于 2025-3-22 11:55:40

Lie Groups978-1-4614-8024-2Series ISSN 0072-5285 Series E-ISSN 2197-5612

可转变 发表于 2025-3-22 15:38:03

http://reply.papertrans.cn/59/5857/585693/585693_6.png

peptic-ulcer 发表于 2025-3-22 17:56:57

http://reply.papertrans.cn/59/5857/585693/585693_7.png

collateral 发表于 2025-3-22 23:14:12

http://reply.papertrans.cn/59/5857/585693/585693_8.png

痛打 发表于 2025-3-23 02:01:24

Geodesics and Maximal Torill deduce it from the surjectivity of the exponential map, which we will prove by showing that a geodesic between the origin and an arbitrary point of the group has the form . for some . in the Lie algebra.

含水层 发表于 2025-3-23 08:37:10

The Weyl Integration Formulae to compute the Haar integral of a class function (e.g., the inner product of two characters) as an integral over the torus. The formula that allows this, the ., is therefore fundamental in representation theory and in other areas, such as random matrix theory.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f