Ensign 发表于 2025-3-21 19:58:01
书目名称Lectures on the Hyperreals影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0583626<br><br> <br><br>书目名称Lectures on the Hyperreals读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0583626<br><br> <br><br>crescendo 发表于 2025-3-21 23:21:45
http://reply.papertrans.cn/59/5837/583626/583626_2.pngCondyle 发表于 2025-3-22 04:00:23
0072-5285book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. MostCEDE 发表于 2025-3-22 06:02:26
http://reply.papertrans.cn/59/5837/583626/583626_4.pngAggressive 发表于 2025-3-22 11:35:45
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583626.jpg火花 发表于 2025-3-22 16:36:02
978-1-4612-6841-3Springer-Verlag Berlin Heidelberg 1998pantomime 发表于 2025-3-22 19:34:50
Lectures on the Hyperreals978-1-4612-0615-6Series ISSN 0072-5285 Series E-ISSN 2197-5612轻快来事 发表于 2025-3-22 23:34:24
What Are the Hyperreals?A nonzero number ε is defined to be ., or ., if.In this case the reciprocal . will be ., or simply ., meaning that . Conversely, if a number ω has this last property, then . will be a nonzero infinitesimal.繁重 发表于 2025-3-23 02:01:07
http://reply.papertrans.cn/59/5837/583626/583626_9.pngAllure 发表于 2025-3-23 07:19:36
Ultrapower Construction of the HyperrealsLet ℕ = {1, 2,…}, and let ℝ. be the set of all sequences of real numbers. A typical member of ℝ. has the form . = 〈.,.,.,… 〉, which may be denoted more briefly as 〈.: . ∈ ℕ〉 or just 〈.〉.