渗漏 发表于 2025-3-21 18:02:04
书目名称Lectures on the Geometry of Poisson Manifolds影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0583625<br><br> <br><br>书目名称Lectures on the Geometry of Poisson Manifolds读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0583625<br><br> <br><br>秘密会议 发表于 2025-3-21 23:44:44
Izu Vaismaniable in a multivariate feedback system. Applications to financial and economic time series data are used to investigate the effectiveness of the new index by power contribution analysis, and confirm that applying our indexation method to markets with insufficient information, such as fast-growing oFreeze 发表于 2025-3-22 01:26:00
http://reply.papertrans.cn/59/5837/583625/583625_3.png担忧 发表于 2025-3-22 04:57:51
http://reply.papertrans.cn/59/5837/583625/583625_4.pngTOXIC 发表于 2025-3-22 09:00:04
An Introduction to Quantization,The present chapter is intended to provide some further important motivation for the study of the .-cohomology of Poisson manifolds. Namely, .-cohomological obstructions appear in the problem of the . of Poisson manifolds.机密 发表于 2025-3-22 13:15:28
http://reply.papertrans.cn/59/5837/583625/583625_6.png光亮 发表于 2025-3-22 17:40:00
Poisson Calculus, calculus here. It is based on the possibility to extend the Poisson bracket to 1-forms, as it was discovered by several authors independently , , etc. (See more references in .) We shall denote by Λ. the space of differential forms of degree κ on a differentiable manifold ..圣人 发表于 2025-3-23 00:17:47
Symplectic Realizations of Poisson Manifolds,efinition 7.2, and it turns out that this idea is fruitful and very important. It can be traced back to S. Lie , and, in our era, it appears in Karasev and Maslov , , then made precise by Weinstein .赔偿 发表于 2025-3-23 05:14:23
Poisson-Lie Groups, then, . , . The latter are not really groups, but noncommutative algebras obtained by a deformation quantization (Chapter 6) of Poisson-Lie groups. From the purely geometric viewpoint it is also completely natural to define and study Poisson-Lie groups.圆锥 发表于 2025-3-23 07:32:46
http://reply.papertrans.cn/59/5837/583625/583625_10.png