Mediocre 发表于 2025-3-26 22:54:22
http://reply.papertrans.cn/59/5836/583564/583564_31.pngMINT 发表于 2025-3-27 04:51:33
Graphs of Polytopes,The vertices and edges of a .-polytope . form an undirected graph . that encodes a lot, but not everything, about the combinatorial structure of the polytope.Exposure 发表于 2025-3-27 07:45:34
http://reply.papertrans.cn/59/5836/583564/583564_33.pngCHIP 发表于 2025-3-27 10:34:21
Schlegel Diagrams for 4-Polytopes,Now that we understand the combinatorics of 3-polytopes (do we?), the next step is to investigate 4-polytopes. Those are harder to understand, since we (i.e., most of us) lack a genuine geometric intuition for the geometry of 4-dimensional Euclidean space.Autobiography 发表于 2025-3-27 16:49:57
http://reply.papertrans.cn/59/5836/583564/583564_35.pngNAVEN 发表于 2025-3-27 20:12:04
http://reply.papertrans.cn/59/5836/583564/583564_36.pngconception 发表于 2025-3-27 22:24:46
Shellability and the Upper Bound Theorem,Perhaps the most famous result about convex polytopes is the .. where .. denotes the number of .-dimensional faces of a .-polytope ..paroxysm 发表于 2025-3-28 02:43:45
http://reply.papertrans.cn/59/5836/583564/583564_38.png蘑菇 发表于 2025-3-28 06:32:34
http://reply.papertrans.cn/59/5836/583564/583564_39.png不能强迫我 发表于 2025-3-28 12:31:40
http://reply.papertrans.cn/59/5836/583564/583564_40.png