Mediocre 发表于 2025-3-26 22:54:22

http://reply.papertrans.cn/59/5836/583564/583564_31.png

MINT 发表于 2025-3-27 04:51:33

Graphs of Polytopes,The vertices and edges of a .-polytope . form an undirected graph . that encodes a lot, but not everything, about the combinatorial structure of the polytope.

Exposure 发表于 2025-3-27 07:45:34

http://reply.papertrans.cn/59/5836/583564/583564_33.png

CHIP 发表于 2025-3-27 10:34:21

Schlegel Diagrams for 4-Polytopes,Now that we understand the combinatorics of 3-polytopes (do we?), the next step is to investigate 4-polytopes. Those are harder to understand, since we (i.e., most of us) lack a genuine geometric intuition for the geometry of 4-dimensional Euclidean space.

Autobiography 发表于 2025-3-27 16:49:57

http://reply.papertrans.cn/59/5836/583564/583564_35.png

NAVEN 发表于 2025-3-27 20:12:04

http://reply.papertrans.cn/59/5836/583564/583564_36.png

conception 发表于 2025-3-27 22:24:46

Shellability and the Upper Bound Theorem,Perhaps the most famous result about convex polytopes is the .. where .. denotes the number of .-dimensional faces of a .-polytope ..

paroxysm 发表于 2025-3-28 02:43:45

http://reply.papertrans.cn/59/5836/583564/583564_38.png

蘑菇 发表于 2025-3-28 06:32:34

http://reply.papertrans.cn/59/5836/583564/583564_39.png

不能强迫我 发表于 2025-3-28 12:31:40

http://reply.papertrans.cn/59/5836/583564/583564_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Lectures on Polytopes; Günter M. Ziegler Textbook 1995 Springer-Verlag New York, Inc. 1995 DEX.algebra.boundary element method.constructio