Autopsy 发表于 2025-3-21 19:39:02

书目名称Learning from Imbalanced Data Sets影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0582941<br><br>        <br><br>书目名称Learning from Imbalanced Data Sets读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0582941<br><br>        <br><br>

召集 发表于 2025-3-21 22:50:32

http://reply.papertrans.cn/59/5830/582941/582941_2.png

Inexorable 发表于 2025-3-22 03:30:55

Alberto Fernández,Salvador García,Francisco HerrerOffers a comprehensive review of imbalanced learning widely used worldwide in many real applications, such as fraud detection, disease diagnosis, etc.Provides the user with the required background and

套索 发表于 2025-3-22 04:47:08

http://reply.papertrans.cn/59/5830/582941/582941_4.png

反馈 发表于 2025-3-22 11:44:00

Book 2018s main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. .This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc p

indemnify 发表于 2025-3-22 16:17:36

osis, etc.Provides the user with the required background and.This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the

非实体 发表于 2025-3-22 18:15:30

Performance Measures,llows: First, Sect. 3.1 sets the background on the evaluation procedure. Then, Sect. 3.2 presents performance measures for crisp, nominal predictions. Section 3.3 discuss evaluation methods for scoring classifiers. Finally, Sect. 3.4 discuss probabilistic evaluation, and Sect. 3.5 concludes the chapter.

谄媚于性 发表于 2025-3-22 22:33:48

Foundations on Imbalanced Classification,veral test beds where algorithms designed to address imbalanced classification problems can be compared. Some of these case studies will be considered in the remaining of this Book in order to analyze the behavior of the different methods discussed.

EXTOL 发表于 2025-3-23 03:10:05

Non-classical Imbalanced Classification Problems, 12.4 the problem of class imbalance when labels are associated to bags of instances, rather than individually (Multi-instance Learning), is analyzed. Next, Sect. 12.5 refers to the problem of class imbalance when there exists an ordinal relation among classes (Ordinal Classification). Finally, in Sect. 12.6 some concluding remarks are presented.

Expostulate 发表于 2025-3-23 05:40:15

Introduction to KDD and Data Science,sing the development of multiple software solutions for the treatment of data and integrating lots of Data Science algorithms. In order to better understand the nature of Data Science, this chapter is organized as follows. Sections 1.2 and 1.3 defines the Data Science terms and its workflow. Then, i
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Learning from Imbalanced Data Sets; Alberto Fernández,Salvador García,Francisco Herrer Book 2018 Springer Nature Switzerland AG 2018 Machi