Enclosure 发表于 2025-3-21 17:57:55
书目名称Learning and Intelligent Optimization影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0582896<br><br> <br><br>书目名称Learning and Intelligent Optimization读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0582896<br><br> <br><br>驾驶 发表于 2025-3-21 21:53:28
http://reply.papertrans.cn/59/5829/582896/582896_2.pngIST 发表于 2025-3-22 03:34:10
http://reply.papertrans.cn/59/5829/582896/582896_3.pngOverstate 发表于 2025-3-22 06:47:31
http://reply.papertrans.cn/59/5829/582896/582896_4.png装入胶囊 发表于 2025-3-22 11:17:37
,Dynamic Service Selection with Optimal Stopping and ‘Trivial Choice’,Two different strategies for searching a best-available service in adaptive, open software systems are simulated. The practical advantage of the theoretically optimal strategy is confirmed over a ‘trivial choice’ approach, however the advantage was only small in the simulation.Antecedent 发表于 2025-3-22 16:20:14
http://reply.papertrans.cn/59/5829/582896/582896_6.pngARBOR 发表于 2025-3-22 19:58:09
https://doi.org/10.1007/978-3-319-19084-6Algorithm construction; Answer set programming; Bio-inspired approaches; Bio-inspired optimization; ClasCardiac 发表于 2025-3-22 23:35:45
Learning a Hidden Markov Model-Based Hyper-heuristic,ng useful mutation heuristics. Empirical evidence supports this on the ., ., . and . problems. A new approach to hyper-heuristics is proposed that addresses this problem by modeling and learning hyper-heuristics by means of a hidden Markov Model. Experiments show that this is a feasible and promising approach.ALLAY 发表于 2025-3-23 03:52:28
Exploring Non-neutral Landscapes with Neutrality-Based Local Search,tion. Some experiments on NK landscapes show that an adaptive discretization is useful to reach high local optima and to launch diversifications automatically. We believe that a hill-climbing using such an adaptive evaluation function could be more appropriated than a classical iterated local search mechanism.使熄灭 发表于 2025-3-23 06:32:24
A Biased Random-Key Genetic Algorithm for the Multiple Knapsack Assignment Problem,em. The MKAP is a hard problem even for small-sized instances. In this paper, we propose an approximate approach for the MKAP based on a biased random key genetic algorithm. Our solution approach exhibits competitive performance when compared to the best approximate approach reported in the literature.