morphology 发表于 2025-3-21 18:37:53

书目名称Knowing without Thinking影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0543819<br><br>        <br><br>书目名称Knowing without Thinking读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0543819<br><br>        <br><br>

树木心 发表于 2025-3-21 23:05:40

Hubert L. Dreyfus.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P

heart-murmur 发表于 2025-3-22 04:06:20

http://reply.papertrans.cn/55/5439/543819/543819_3.png

Blazon 发表于 2025-3-22 06:56:20

Massimiliano Cappuccio,Michael Wheeler.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P

majestic 发表于 2025-3-22 08:50:17

Daniel D. Hutto.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P

容易生皱纹 发表于 2025-3-22 16:41:19

Michael Schmitz.. We are interested here in small . and show that for all .∈..⊂[−2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..⊂[−2,2] satisfying (2), provided we assume in (3) that .. See P

乐章 发表于 2025-3-22 18:34:36

http://reply.papertrans.cn/55/5439/543819/543819_7.png

constellation 发表于 2025-3-22 23:50:02

http://reply.papertrans.cn/55/5439/543819/543819_8.png

Medley 发表于 2025-3-23 05:08:04

Daniel A. Schmickingom geometric graph in which vertices correspond to points generated randomly and independently from a non-isotropic .-dimensional Gaussian distribution, and two vertices are connected if the distance between them is smaller than some pre-specified threshold. We derive new notions of dimensionality w

induct 发表于 2025-3-23 07:40:49

tric analysis.Written from an interdisciplinary perspective,Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measur
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Knowing without Thinking; Mind, Action, Cognit Zdravko Radman (Professor of Philosophy) Book 2012 Palgrave Macmillan, a division of Macmill