小天使
发表于 2025-3-21 16:12:43
书目名称Joint Training for Neural Machine Translation影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0501166<br><br> <br><br>书目名称Joint Training for Neural Machine Translation读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0501166<br><br> <br><br>
量被毁坏
发表于 2025-3-21 23:27:18
Agreement-Based Joint Training for Bidirectional Attention-Based Neural Machine Translation,n the same training data. Experiments on ChineseEnglish and English-French translation tasks show that agreement-based joint training significantly improves both alignment and translation quality over independent training.
Distribution
发表于 2025-3-22 00:39:12
Semi-supervised Learning for Neural Machine Translation,et and target-to-source translation models serve as the encoder and decoder, respectively. Our approach can not only exploit the monolingual corpora of the target language, but also of the source language. Experiments on the ChineseEnglish dataset show that our approach achieves significant improvements over state-of-the-art SMT and NMT systems.
AMITY
发表于 2025-3-22 06:50:26
http://reply.papertrans.cn/51/5012/501166/501166_4.png
Herd-Immunity
发表于 2025-3-22 09:56:30
http://reply.papertrans.cn/51/5012/501166/501166_5.png
越自我
发表于 2025-3-22 15:36:46
http://reply.papertrans.cn/51/5012/501166/501166_6.png
MOTTO
发表于 2025-3-22 19:05:00
http://reply.papertrans.cn/51/5012/501166/501166_7.png
subordinate
发表于 2025-3-22 23:00:42
Book 2019 of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to i
HATCH
发表于 2025-3-23 01:35:18
http://reply.papertrans.cn/51/5012/501166/501166_9.png
发起
发表于 2025-3-23 08:01:13
Related Work,T. Next we summarize a number of work which incorporate additional data resources, such as monolingual corpora and pivot language corpora, into machine translation systems. Finally, we make a simple review of the studies about contrastive learning, which is a key technique in our fourth work.