Hoover 发表于 2025-3-21 18:15:00

书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0500125<br><br>        <br><br>书目名称Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0500125<br><br>        <br><br>

resistant 发表于 2025-3-21 20:22:54

Book 2015eory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other dis

盘旋 发表于 2025-3-22 02:48:03

http://reply.papertrans.cn/51/5002/500125/500125_3.png

Agnosia 发表于 2025-3-22 06:22:55

http://reply.papertrans.cn/51/5002/500125/500125_4.png

连接 发表于 2025-3-22 12:26:20

Jacobi Forms over Totally Real Number Fields,From this chapter on, the number field . is assumed to be totally real. This restriction is necessary for guaranteeing the holomorphicity of .. As before, we shall simply write ., . for the ring of integers and different of ., respectively.

Nostalgia 发表于 2025-3-22 14:04:55

Singular Jacobi Forms,As in the previous chapter, . will denote a totally real number field. Similarly, ., . will denote the ring of integers and different of ., respectively. Moreover, we shall use . and . for the metaplectic cover of ..

扫兴 发表于 2025-3-22 17:34:39

978-3-319-12915-0Springer International Publishing Switzerland 2015

insolence 发表于 2025-3-22 23:36:00

http://reply.papertrans.cn/51/5002/500125/500125_8.png

Monotonous 发表于 2025-3-23 02:26:09

Hatice BoylanPresents a theory which is intended to open new directions of research in the theory of Hilbert modular forms.Provides a steep introduction to Weil representations of Hilbert modular groups.Provides t

为宠爱 发表于 2025-3-23 08:57:44

http://reply.papertrans.cn/51/5002/500125/500125_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields; Hatice Boylan Book 2015 Springer International Publish