刘兴旺 发表于 2025-3-21 18:00:13
书目名称Introduction to Galois Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0476479<br><br> <br><br>书目名称Introduction to Galois Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0476479<br><br> <br><br>嘲弄 发表于 2025-3-21 23:49:51
Introduction to Galois Theory978-3-031-66182-2Series ISSN 1615-2085 Series E-ISSN 2197-4144确定 发表于 2025-3-22 03:59:38
http://reply.papertrans.cn/48/4765/476479/476479_3.png遣返回国 发表于 2025-3-22 08:17:31
http://reply.papertrans.cn/48/4765/476479/476479_4.pngreject 发表于 2025-3-22 10:38:31
Basic Concepts of Group Theory,In this chapter, we recall important elements of group theory that will be useful later on.争议的苹果 发表于 2025-3-22 16:20:20
Basic Concepts of Ring Theory,As in the previous chapter, we recall here some important elements of ring theory.Instrumental 发表于 2025-3-22 19:22:35
Basic Concepts of Algebras Over a Field,Algebras and field extensions play a crucial role in Galois theory. In this chapter, we study the definitions and general properties of these structures.Ondines-curse 发表于 2025-3-22 23:00:53
Finite Fields and Perfect Fields,The framework chosen in this book is that of perfect fields, which we study in this chapter. We first introduce finite fields, which are fundamental examples of perfect fields.Decimate 发表于 2025-3-23 02:59:12
The Galois Correspondence,In this chapter, we prove the main theorem of Galois theory: the Galois correspondence.collagenase 发表于 2025-3-23 08:14:47
http://reply.papertrans.cn/48/4765/476479/476479_10.png