FAD
发表于 2025-3-21 16:17:54
书目名称Intuitionistic Proof Versus Classical Truth影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0474544<br><br> <br><br>书目名称Intuitionistic Proof Versus Classical Truth读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0474544<br><br> <br><br>
袖章
发表于 2025-3-21 23:04:19
http://reply.papertrans.cn/48/4746/474544/474544_2.png
原谅
发表于 2025-3-22 02:59:52
Connection Between the Principle of Inductive Evidence and the Bar Theorem,xplaining it properly. Therefore, I shall present here a more adequate treatment of the connection between . and .. In fact, I shall assume acquaintance with Sects. . and Theorem . of CS and provide a revised version of Theorem ..
大洪水
发表于 2025-3-22 08:25:23
http://reply.papertrans.cn/48/4746/474544/474544_4.png
行为
发表于 2025-3-22 12:20:49
http://reply.papertrans.cn/48/4746/474544/474544_5.png
MUMP
发表于 2025-3-22 16:19:47
Negationless Intuitionism,or such semantics, strong completeness is restorable. We argue that lawless negationless semantics is a suitable framework for a constructive . interpretation of any second-order formalisable theory (classical or intuitionistic, contradictory or not).
切割
发表于 2025-3-22 18:18:24
http://reply.papertrans.cn/48/4746/474544/474544_7.png
微尘
发表于 2025-3-22 23:06:29
http://reply.papertrans.cn/48/4746/474544/474544_8.png
卷发
发表于 2025-3-23 05:14:32
http://reply.papertrans.cn/48/4746/474544/474544_9.png
set598
发表于 2025-3-23 07:53:40
Negationless Intuitionism,mpleteness of full first-order logic fails. We then consider a .à la. for second-order intuitionistic logic. By using the theory of . we prove that, for such semantics, strong completeness is restorable. We argue that lawless negationless semantics is a suitable framework for a constructive . interp