Lincoln 发表于 2025-3-21 18:36:37

书目名称Introduction to Stochastic Analysis and Malliavin Calculus影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0474222<br><br>        <br><br>书目名称Introduction to Stochastic Analysis and Malliavin Calculus读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0474222<br><br>        <br><br>

jungle 发表于 2025-3-22 00:09:54

Gaussian random variables,This chapter is devoted to definitions and main properties of ..

小虫 发表于 2025-3-22 02:57:02

http://reply.papertrans.cn/48/4743/474222/474222_3.png

增减字母法 发表于 2025-3-22 06:24:34

http://reply.papertrans.cn/48/4743/474222/474222_4.png

Anticlimax 发表于 2025-3-22 10:32:56

http://reply.papertrans.cn/48/4743/474222/474222_5.png

Priapism 发表于 2025-3-22 16:12:34

,Formulae of Feynman—Kac and Girsanov,We are here concerned with the stochastic differential equation . under Hypotheses 8.1 and 8.18.

dowagers-hump 发表于 2025-3-22 18:23:28

Asymptotic behaviour of transition semigroups,For the sake of simplicity, we shall limit ourselves to stochastic differential equations with constant diffusion coefficients (additive noise) of the form . under the following assumptions

远足 发表于 2025-3-22 22:19:33

https://doi.org/10.1007/978-88-7642-499-1Brownian motion; Feynman-Kac semigroup; Gaussian measure; Malliavin calculus

Minutes 发表于 2025-3-23 04:30:13

http://reply.papertrans.cn/48/4743/474222/474222_9.png

cluster 发表于 2025-3-23 08:35:04

http://reply.papertrans.cn/48/4743/474222/474222_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Introduction to Stochastic Analysis and Malliavin Calculus; Giuseppe Prato Textbook 2014 Scuola Normale Superiore 2014 Brownian motion.Fey