FERAL 发表于 2025-3-21 17:31:08
书目名称Introduction to Infinite Dimensional Stochastic Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0473773<br><br> <br><br>书目名称Introduction to Infinite Dimensional Stochastic Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0473773<br><br> <br><br>floaters 发表于 2025-3-21 23:02:44
http://reply.papertrans.cn/48/4738/473773/473773_2.png不要不诚实 发表于 2025-3-22 00:44:14
Stochastic Calculus of Variation for Wiener Functionals,especially to the probabilistic proof of Hörmander’s theorem on hypoellipticity of partial differential operators. Moreover, we introduce two important branches in this area which were developed very recently: the quasi sure analysis and the anticipating stochastic calculus.植物茂盛 发表于 2025-3-22 04:51:53
http://reply.papertrans.cn/48/4738/473773/473773_4.pngChromatic 发表于 2025-3-22 10:50:28
Book 2000in. In 1931, Kolmogorov deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processessigmoid-colon 发表于 2025-3-22 15:26:10
nd W. Martin. In 1931, Kolmogorov deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes978-94-010-5798-1978-94-011-4108-6Graduated 发表于 2025-3-22 20:36:43
http://reply.papertrans.cn/48/4738/473773/473773_7.pngmodifier 发表于 2025-3-22 21:35:48
http://reply.papertrans.cn/48/4738/473773/473773_8.pngAnthropoid 发表于 2025-3-23 03:12:39
http://reply.papertrans.cn/48/4738/473773/473773_9.pngAerophagia 发表于 2025-3-23 06:31:37
Introduction to Infinite Dimensional Stochastic Analysis