誓言 发表于 2025-3-23 10:11:44

http://reply.papertrans.cn/48/4738/473773/473773_11.png

Accessible 发表于 2025-3-23 13:51:28

Malliavin Calculus,iener constructed in 1923 a mathematical model for Brownian motion, namely the Wiener measure on the space of continuous functions, many attemps have been made to develop a theory of differential analysis for Wiener functionals. Unfortunately, they were not successful since most usual functionals su

Psychogenic 发表于 2025-3-23 19:48:32

http://reply.papertrans.cn/48/4738/473773/473773_13.png

ARY 发表于 2025-3-23 23:46:30

General Theory of White Noise Analysis,functionals as functionals of white noise. More precisely, let Ω denote the space of all continuous functions . on ∝, null at 0, equipped with the topology of uniform convergence on bounded sets. Then Ω is a Préchet space. Let .(Ω) denote the Borel σ-field on Ω and ℙ the standard Wiener measure on (

Affluence 发表于 2025-3-24 02:30:25

http://reply.papertrans.cn/48/4738/473773/473773_15.png

厨师 发表于 2025-3-24 07:45:32

http://reply.papertrans.cn/48/4738/473773/473773_16.png

高调 发表于 2025-3-24 13:23:44

Zhi-yuan Huang,Jia-an Yan angenommen. Seitdem hat sich die Emotionsforschung weiter produktiv entwickelt. In den letzten zwei Jahren sind zahlreiche neue Publikationn zu den in der Arbeit behandelten Themen erschienen -nicht nur in der Soziologie, sondern in allen wissenschaftlichen Disziplinen, die zur Erforschung der Emot

休闲 发表于 2025-3-24 17:51:42

http://reply.papertrans.cn/48/4738/473773/473773_18.png

粗鲁性质 发表于 2025-3-24 22:31:01

Foundations of Infinite Dimensional Analysis,Let . denote the number field ℝ or ℂ. The capital letters ., . and . will denote Hilbert spaces on .. We use (·, ·) and ∥ · ∥ to denote the inner product and norm in any Hilbert space. By convention, (., .) is linear in . and conjugate-linear in .. All results apply to both cases if the number field ℝ or ℂ is not specified.

嬉耍 发表于 2025-3-24 23:19:24

http://reply.papertrans.cn/48/4738/473773/473773_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Introduction to Infinite Dimensional Stochastic Analysis; Zhi-yuan Huang,Jia-an Yan Book 2000 Springer Science+Business Media Dordrecht 20