Pessimistic 发表于 2025-3-21 16:08:50

书目名称Introduction to Deep Learning影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473601<br><br>        <br><br>书目名称Introduction to Deep Learning读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473601<br><br>        <br><br>

可行 发表于 2025-3-21 21:24:29

http://reply.papertrans.cn/48/4737/473601/473601_2.png

Infantry 发表于 2025-3-22 01:15:13

http://reply.papertrans.cn/48/4737/473601/473601_3.png

Feckless 发表于 2025-3-22 07:33:15

Feedforward Neural Networks,present these abstract and graphical objects as mathematical objects (vectors, matrices and tensors). Rosenblatt’s perceptron rule is also presented in detail, which makes it clear that a multilayered perceptron is impossible. The Delta rule, as an alternative, is presented, and the idea of iterativ

挡泥板 发表于 2025-3-22 10:01:16

Modifications and Extensions to a Feed-Forward Neural Network,em of local minima as one of the main problems in machine learning is explored with all of its intricacies. The main strategy against local minima is the idea of regularization, by adding a regularization parameter when learning. Both L1 and L2 regularizations are explored and explained in detail. T

名次后缀 发表于 2025-3-22 16:33:35

Convolutional Neural Networks,regression accepts data, and defines 1D and 2D convolutional layers as a natural extension of the logistic regression. The chapter also details on how to connect the layers and dimensionality problems. The local receptive field is introduced as a core concept of any convolutional architecture and th

podiatrist 发表于 2025-3-22 17:12:58

Recurrent Neural Networks, basic settings of learning (sequence to label, sequence to sequence of labels and sequences with no labels) are introduced and explained in probabilistic terms. The role of hidden states is presented in a detailed exposition (with abundant illustrations) in the setting of a simple recurrent network

Ejaculate 发表于 2025-3-22 22:21:13

Autoencoders,was left out in Chap. ., completing the exposition of the principal component analysis, and demonstrating what a distributed representation is in mathematical terms. The chapter then introduces the main unsupervised learning technique for deep learning, the autoencoder. The structural aspects are pr

极肥胖 发表于 2025-3-23 05:02:37

http://reply.papertrans.cn/48/4737/473601/473601_9.png

agitate 发表于 2025-3-23 06:13:04

http://reply.papertrans.cn/48/4737/473601/473601_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Introduction to Deep Learning; From Logical Calculu Sandro Skansi Textbook 2018 Springer International Publishing AG, part of Springer Natu