万圣节 发表于 2025-3-21 17:27:36
书目名称Introduction to Coding Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0473523<br><br> <br><br>书目名称Introduction to Coding Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0473523<br><br> <br><br>BUST 发表于 2025-3-21 22:45:48
Perfect Codes and Uniformly Packed Codes,recting code. The theorem was first proved by S. P. Lloyd (1957) (indeed for . 2) using analytic methods. Since then it has been generalized by many authors (cf. ) but it is still referred to as Lloyd’s theorem. The proof in this section is due to D. M. Cvetković and J. H. van Lint (1977; cf. ).Parameter 发表于 2025-3-22 01:19:55
http://reply.papertrans.cn/48/4736/473523/473523_3.pngBOLUS 发表于 2025-3-22 04:50:19
0072-5285topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One o温和女人 发表于 2025-3-22 11:34:18
Linear Codes,mbols .., .., ..,... is coded into an infinite sequence of message symbols. For example, for rate 1/2 one could have .., .., ..,... → .., .., .., ..,..., where ... is a function of ..,.., ...,... For block codes we generalize (2.1.3) to arbitrary alphabets.TRAWL 发表于 2025-3-22 14:16:48
Bounds on Codes,nce .. We are interested in the maximal number of codewords (i.e. the largest . which can be put in place of the *). An (., ., .) code which is not contained in any (., . + 1, .) code is called maximal.Pelvic-Floor 发表于 2025-3-22 20:44:34
http://reply.papertrans.cn/48/4736/473523/473523_7.png夜晚 发表于 2025-3-22 21:48:51
http://reply.papertrans.cn/48/4736/473523/473523_8.png1分开 发表于 2025-3-23 03:29:50
http://reply.papertrans.cn/48/4736/473523/473523_9.png消散 发表于 2025-3-23 06:34:00
Introduction to Coding Theory978-3-662-07998-0Series ISSN 0072-5285 Series E-ISSN 2197-5612