万圣节 发表于 2025-3-21 17:27:36

书目名称Introduction to Coding Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0473523<br><br>        <br><br>书目名称Introduction to Coding Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0473523<br><br>        <br><br>

BUST 发表于 2025-3-21 22:45:48

Perfect Codes and Uniformly Packed Codes,recting code. The theorem was first proved by S. P. Lloyd (1957) (indeed for . 2) using analytic methods. Since then it has been generalized by many authors (cf. ) but it is still referred to as Lloyd’s theorem. The proof in this section is due to D. M. Cvetković and J. H. van Lint (1977; cf. ).

Parameter 发表于 2025-3-22 01:19:55

http://reply.papertrans.cn/48/4736/473523/473523_3.png

BOLUS 发表于 2025-3-22 04:50:19

0072-5285topic in the curriculum of most universities. On the other hand, it is obvious that discrete mathematics is rapidly growing in importance. The growing need for mathe­ maticians and computer scientists in industry will lead to an increase in courses offered in the area of discrete mathematics. One o

温和女人 发表于 2025-3-22 11:34:18

Linear Codes,mbols .., .., ..,... is coded into an infinite sequence of message symbols. For example, for rate 1/2 one could have .., .., ..,... → .., .., .., ..,..., where ... is a function of ..,.., ...,... For block codes we generalize (2.1.3) to arbitrary alphabets.

TRAWL 发表于 2025-3-22 14:16:48

Bounds on Codes,nce .. We are interested in the maximal number of codewords (i.e. the largest . which can be put in place of the *). An (., ., .) code which is not contained in any (., . + 1, .) code is called maximal.

Pelvic-Floor 发表于 2025-3-22 20:44:34

http://reply.papertrans.cn/48/4736/473523/473523_7.png

夜晚 发表于 2025-3-22 21:48:51

http://reply.papertrans.cn/48/4736/473523/473523_8.png

1分开 发表于 2025-3-23 03:29:50

http://reply.papertrans.cn/48/4736/473523/473523_9.png

消散 发表于 2025-3-23 06:34:00

Introduction to Coding Theory978-3-662-07998-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Introduction to Coding Theory; J. H. Lint Textbook 19821st edition Springer Science+Business Media New York 1982 code.coding.coding theory