T-cell 发表于 2025-3-21 17:19:40
书目名称Innovationen und Innovationsmanagement im Gesundheitswesen影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0466975<br><br> <br><br>书目名称Innovationen und Innovationsmanagement im Gesundheitswesen读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0466975<br><br> <br><br>OGLE 发表于 2025-3-21 23:13:04
http://reply.papertrans.cn/47/4670/466975/466975_2.png可触知 发表于 2025-3-22 04:11:44
http://reply.papertrans.cn/47/4670/466975/466975_3.pngMAG 发表于 2025-3-22 04:50:30
http://reply.papertrans.cn/47/4670/466975/466975_4.pnginstulate 发表于 2025-3-22 08:46:05
ysicians for accurate diagnosis. In this chapter, a completely integrated CAD system based on deep learning is presented to diagnose breast lesions from digital X-ray mammograms involving detection, segmentation, and classification. To automatically detect breast lesions from mammograms, a regional拥挤前 发表于 2025-3-22 16:45:31
http://reply.papertrans.cn/47/4670/466975/466975_6.png女上瘾 发表于 2025-3-22 20:44:20
http://reply.papertrans.cn/47/4670/466975/466975_7.png间谍活动 发表于 2025-3-23 00:52:40
Heiko Block,Mareike Heinzen,Nils von Dellingshausenetal modeling based on computational anatomy, deep learning-based methods can obtain muscle information automatically. Through analysis of image features, both approaches can obtain muscle characteristics such as shape, volume, and area, and derive additional information by analyzing other image tex熄灭 发表于 2025-3-23 01:38:17
Ariane Segelitz-Karsten,Nadine Hietschold,Sebastian Gurtner,Ronny Reinhardt-dimensional (3D) computed tomography (CT) images. CT images are widely used to visualize 3D anatomical structures composed of multiple organ regions inside the human body in clinical medicine. Automatic recognition and segmentation of multiple organs on CT images is a fundamental processing step ofcomely 发表于 2025-3-23 07:11:46
Waldemar Pelzich is expensive to obtain. Active Learning (AL) frameworks can facilitate major improvements in CNN performance with intelligent selection of minimal data to be labeled. This paper proposes a novel diversified AL based on Fisher information (FI) for the first time for CNNs, where gradient computati