用不完 发表于 2025-3-23 10:52:42
The Homomorphism Theorems,y free abelian group, but not every abelian group, has faithful representations of finite degree over some field. This raises two questions. Firstly, for which classes-of-groups ? are homomorphic images of linear ?-groups necessarily isomorphic to linear groups? Secondly, given an arbitrary linear g下级 发表于 2025-3-23 16:33:54
The Jordan Decomposition and Splittable Linear Groups,. is unipotent if and only if all the eigenvalues of . are 1, which happens if and only if there exists an element g of GL(.) such that . is unitriangular. In this case . has infinite order if char . = 0 and is a .-element if char .>0.Mediocre 发表于 2025-3-23 21:19:42
http://reply.papertrans.cn/47/4647/464637/464637_13.png爱管闲事 发表于 2025-3-24 00:49:45
http://reply.papertrans.cn/47/4647/464637/464637_14.pngcorporate 发表于 2025-3-24 06:13:30
http://reply.papertrans.cn/47/4647/464637/464637_15.png使残废 发表于 2025-3-24 07:21:54
A Localizing Technique and Applications,ues we have seldom used the linear structure of the matrix ring to accomplish this. The object of this chapter is to describe a general method for extending theorems from finitely generated linear groups to more general linear groups that relies heavily on the linearity. Although the fundamental resobeisance 发表于 2025-3-24 11:08:32
Appendix on Algebraic Groups,sed subgroups of GL(., .). Our first aim is to give an account of these results, and in most cases also their proofs. In a number of places in this book we have skirted round some of these properties of algebraic groups and here and there we have come very close to using them. I hope that this chapt制度 发表于 2025-3-24 18:25:25
http://reply.papertrans.cn/47/4647/464637/464637_18.png奇怪 发表于 2025-3-24 19:56:51
https://doi.org/10.1007/978-3-642-87081-1Abelian group; Finite; Group theory; Groups; Groups of Matrices; Morphism; Unendliche lineare Gruppe; matri兽群 发表于 2025-3-25 02:40:17
978-3-642-87083-5Springer-Verlag Berlin Heidelberg 1973