CLOG 发表于 2025-3-21 17:52:15
书目名称How Fuzzy Concepts Contribute to Machine Learning影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0428612<br><br> <br><br>书目名称How Fuzzy Concepts Contribute to Machine Learning读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0428612<br><br> <br><br>新娘 发表于 2025-3-21 21:52:29
http://reply.papertrans.cn/43/4287/428612/428612_2.pngabracadabra 发表于 2025-3-22 00:33:16
Unsupervised Feature Selection Method Based on Sensitivity and Correlation Concepts for Multiclass Pive clustering and the concepts of sensitivity and Pearson’s correlation. We show how this method is employed as the fitness function in a genetic algorithm (GA) in order to evaluate feature subsets. Informally, the method works as follows. First, the sensitivity index of each feature is computed by最后一个 发表于 2025-3-22 07:39:10
http://reply.papertrans.cn/43/4287/428612/428612_4.pngCognizance 发表于 2025-3-22 12:13:35
http://reply.papertrans.cn/43/4287/428612/428612_5.png舔食 发表于 2025-3-22 13:55:40
Hesitant Fuzzy Decision Tree Approach for Highly Imbalanced Data Classificationd data when the distribution of data samples is not the same in different classes. That is, there is usually a large difference among the number of instances in different classes. If this is the case, learning algorithms, with their goal of maximizing the accuracy of the inferred model, may ignore tordain 发表于 2025-3-22 18:42:44
http://reply.papertrans.cn/43/4287/428612/428612_7.png连接 发表于 2025-3-23 00:40:20
Ensemble of Feature Selection Methods: A Hesitant Fuzzy Set Based Approach significantly smaller than the number of instances, this is not the case for DNA microarray data. This chapter introduces a feature selection algorithm based on a greedy search, and it uses main concepts from hesitant fuzzy set theory as an heuristic to tackle the feature selection problem for highharbinger 发表于 2025-3-23 04:44:34
http://reply.papertrans.cn/43/4287/428612/428612_9.pngintercede 发表于 2025-3-23 07:57:42
A Hybrid Filter-Based Feature Selection Method via Hesitant Fuzzy and Rough Sets Conceptsthe significant features. In particular, the approach described in this chapter is based on the combination of concepts related to rough set theory to build a feature selection algorithm. The concepts considered include weighted rough sets, fuzzy rough sets, and hesitant fuzzy sets.