retort 发表于 2025-3-21 16:16:21
书目名称High-dimensional Knot Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0426816<br><br> <br><br>书目名称High-dimensional Knot Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0426816<br><br> <br><br>种植,培养 发表于 2025-3-21 23:31:56
http://reply.papertrans.cn/43/4269/426816/426816_2.pngGRIN 发表于 2025-3-22 03:08:00
http://reply.papertrans.cn/43/4269/426816/426816_3.png修正案 发表于 2025-3-22 06:53:06
Localization and completion in ,-theoryy reducing the computation for a complicated ring to simpler rings (e.g. fields). The classic example of localization and completion is the Hasse-Minkowski principle by which quadratic forms over ℤ are related to quadratic forms over ℚ and the finite fields F. and the .-adic completions ., . of ℤ, ℚEngulf 发表于 2025-3-22 11:57:35
Algebraic transversalityclic covers of compact manifolds and finite . complexes. Refer to Ranicki for a previous account of algebraic transversality: here, only the additional results required for the new applications are proved. The construction in Part Two of the algebraic invariants of knots will make use胆小懦夫 发表于 2025-3-22 14:34:38
Noncommutative localizatione noncommutative rings. High-dimensional knot theory requires the noncommutative localization matrix inversion method of Cohn , . The algebraic .- and .-theory invariants of codimension 2 embeddings frequently involve this type of localization of a polynomial ring, as will become apparent inoblique 发表于 2025-3-22 18:29:13
Endomorphism ,-theoryith an endomorphism . : . → . is essentially the same as a module (., .) over the polynomial ring .[.], with the indeterminate . acting on . by . This correspondence will be used to relate the algebraic .-groups .. (...[.]) of the localizations ...[.] of .[.] to the .-groups of pairs (., .) with . a抱负 发表于 2025-3-22 23:57:06
http://reply.papertrans.cn/43/4269/426816/426816_8.png增强 发表于 2025-3-23 01:51:30
Witt vectorstermines the endomorphism .-theory class. In Chap. 17 the Reidemeister torsion of an .-contractible finite f.g. .[., ..]-module chain complex . will be identified with the Witt vector determined by the Alexander polynomials. In the applications to knot theory in Chap. 33 . will be the cellular chain离开就切除 发表于 2025-3-23 07:50:34
http://reply.papertrans.cn/43/4269/426816/426816_10.png