incompatible 发表于 2025-3-21 18:18:05
书目名称High Dimensional Probability VI影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0426220<br><br> <br><br>书目名称High Dimensional Probability VI读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0426220<br><br> <br><br>hauteur 发表于 2025-3-21 23:22:51
http://reply.papertrans.cn/43/4263/426220/426220_2.png猛击 发表于 2025-3-22 03:23:04
http://reply.papertrans.cn/43/4263/426220/426220_3.png发酵剂 发表于 2025-3-22 04:48:30
Maximal Inequalities for Centered Norms of Sums of Independent Random VectorsLet . be independent random variables and . We show that for any constants ...We also discuss similar inequalities for sums of Hilbert and Banach spacevalued random vectors.debble 发表于 2025-3-22 11:53:40
On Some Gaussian Concentration Inequality for Non-Lipschitz FunctionsA concentration inequality for functions of a pair of Gaussian random vectors is established. Instead of the usual Lipschitz condition some boundedness of second-order derivatives is assumed. This result can be viewed as an extension of a well-known tail estimate for Gaussian random bi-linear forms to the non-linear case.DOSE 发表于 2025-3-22 15:13:35
http://reply.papertrans.cn/43/4263/426220/426220_6.pngadipose-tissue 发表于 2025-3-22 19:38:55
http://reply.papertrans.cn/43/4263/426220/426220_7.png流行 发表于 2025-3-22 22:38:12
http://reply.papertrans.cn/43/4263/426220/426220_8.pngnotion 发表于 2025-3-23 02:25:18
Strong Log-concavity is Preserved by Convolutionon of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong logconcavity under convolution has apparently not been investigated previously in the continuous case.不如乐死去 发表于 2025-3-23 06:01:01
http://reply.papertrans.cn/43/4263/426220/426220_10.png