pacifist 发表于 2025-3-26 21:00:21
F), avec n > 1. Alors il existe une suite finie de corps K.=F⊂K.⊂…⊂K., où K. est une extension fini cyclique de K., telle que la représentation de GL(n,K.) qu’on obtient à partir de π par changement de base successifs de K. à K. ne soit plus cuspidale. La preuve est encore valable en caractéristiqueTOXIC 发表于 2025-3-27 02:11:10
http://reply.papertrans.cn/43/4257/425606/425606_32.pngcleaver 发表于 2025-3-27 06:49:14
Basil Goldingif ..(.) is the number of (possibly overlapping) occurrences of the word . in the .-ary expansion of ., then the series . can be expressed in terms of the Riemann zeta function or of the Hurwitz zeta function..This allows us to show that . but also to give formulas like .Moreover we give a general e议程 发表于 2025-3-27 11:42:51
if ..(.) is the number of (possibly overlapping) occurrences of the word . in the .-ary expansion of ., then the series . can be expressed in terms of the Riemann zeta function or of the Hurwitz zeta function..This allows us to show that . but also to give formulas like .Moreover we give a general e群居动物 发表于 2025-3-27 15:59:32
http://reply.papertrans.cn/43/4257/425606/425606_35.pngmuster 发表于 2025-3-27 19:38:09
Seetharama A. Acharya,Marcos Intaglietta,Amy G. Tsai,Fantao Mengis to exhibit links between three topics : automaticity, algebraicity (mod n) and D-finiteness. Diagonals of rational fractions seem to be at the heart of the problem. In the last part, we show they appear as (regular) solutions near singularity of Picard-Fuchs differential equations.冷淡一切 发表于 2025-3-27 22:31:22
http://reply.papertrans.cn/43/4257/425606/425606_37.png脆弱吧 发表于 2025-3-28 03:52:48
http://reply.papertrans.cn/43/4257/425606/425606_38.pngconfederacy 发表于 2025-3-28 08:32:07
http://reply.papertrans.cn/43/4257/425606/425606_39.png正式演说 发表于 2025-3-28 12:04:47
John P. Harrington,Hanna Wollockois to exhibit links between three topics : automaticity, algebraicity (mod n) and D-finiteness. Diagonals of rational fractions seem to be at the heart of the problem. In the last part, we show they appear as (regular) solutions near singularity of Picard-Fuchs differential equations.