ARRAY 发表于 2025-3-21 16:43:25
书目名称Haar Series and Linear Operators影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0420358<br><br> <br><br>书目名称Haar Series and Linear Operators读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0420358<br><br> <br><br>越自我 发表于 2025-3-21 20:24:02
http://reply.papertrans.cn/43/4204/420358/420358_2.png大洪水 发表于 2025-3-22 00:52:46
https://doi.org/10.1007/978-94-010-1073-3 known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion iMetastasis 发表于 2025-3-22 06:42:02
Causes of the Abuse of Illicit Drugs, to the H.s. Such operators are said to be multipliers. Recall that the norm of Λ from .. into .. (..) is denoted by ‖Λ‖.,. (‖Λ‖.). The main result of Chapter 5 (Corollary 5.8) may be formulated in the following way. If .% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn%拥护者 发表于 2025-3-22 11:14:17
http://reply.papertrans.cn/43/4204/420358/420358_5.pngfacilitate 发表于 2025-3-22 16:58:17
http://reply.papertrans.cn/43/4204/420358/420358_6.png纠缠,缠绕 发表于 2025-3-22 17:26:45
The Unconditionality of the Haar system,ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs% 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai% aabeqaamaabaabauaakeaacqaH1oqz异常 发表于 2025-3-23 00:19:03
Reproducibility of the Haar system, known (see Theorem 1.b.3) that there exists a subsequence {x.}. of {x.}. which is equivalent to a block basis of {y.}.. It is natural to say in such situations that the subsequence {x.}. is reproduced as a block basis of {y.}.. Of particular interest is the case when the above mentioned assertion i发现 发表于 2025-3-23 02:22:35
http://reply.papertrans.cn/43/4204/420358/420358_9.png有效 发表于 2025-3-23 07:58:18
http://reply.papertrans.cn/43/4204/420358/420358_10.png