难受 发表于 2025-3-21 16:52:41
书目名称Galois Theories of Fields and Rings影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0391008<br><br> <br><br>书目名称Galois Theories of Fields and Rings读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0391008<br><br> <br><br>aneurysm 发表于 2025-3-21 22:05:53
http://reply.papertrans.cn/40/3911/391008/391008_2.pngFRAX-tool 发表于 2025-3-22 00:45:40
http://reply.papertrans.cn/40/3911/391008/391008_3.png实施生效 发表于 2025-3-22 04:50:35
http://reply.papertrans.cn/40/3911/391008/391008_4.png远地点 发表于 2025-3-22 09:27:06
The Galois Theorem of Grothendieckal Galois extension of fields, a finite-dimensional .-algebra . is split by . when each element . ∈ . is a root of a polynomial .(.) ∈ .[.] which factors in .[.] into distinct linear factors. The corresponding Galois theorem exhibits a contravariant equivalence between the category of finite-dimensiInstinctive 发表于 2025-3-22 14:14:46
Profinite Topological Spacestructures on the algebraic ones. These topological aspects do not appear explicitly in the finite-dimensional cases, just because the topologies involved are then discrete. The aim of the present chapter is to develop the useful topological ingredients in view of proving infinite-dimensional GaloisInstinctive 发表于 2025-3-22 21:05:20
The Galois Theorems in Arbitrary Dimensionr a field. This is a first step towards a Galois theory for rings, where the polynomial approach fails to work. The present chapter develops a second important step in the same direction: getting rid of the notion of dimension, which does not naturally make sense in the case of rings. We thus genera宽敞 发表于 2025-3-23 00:02:57
http://reply.papertrans.cn/40/3911/391008/391008_8.pngEVADE 发表于 2025-3-23 02:41:48
http://reply.papertrans.cn/40/3911/391008/391008_9.pngEndearing 发表于 2025-3-23 08:37:58
http://reply.papertrans.cn/40/3911/391008/391008_10.png