semiskilled 发表于 2025-3-25 07:15:49
http://reply.papertrans.cn/40/3911/391008/391008_21.png饶舌的人 发表于 2025-3-25 08:02:35
Logogen light. Die Architektur der Sprache, case of fields. The same functors make it possible to define the profinite Galois groupoid of a Galois extension of rings. The Galois theorem for rings then exhibits an equivalence between the category of split algebras and that of profinite presheaves on the profinite Galois groupoid. In the caseobviate 发表于 2025-3-25 15:22:14
http://reply.papertrans.cn/40/3911/391008/391008_23.pngcoalition 发表于 2025-3-25 18:59:22
http://reply.papertrans.cn/40/3911/391008/391008_24.pngDiatribe 发表于 2025-3-25 22:34:56
http://reply.papertrans.cn/40/3911/391008/391008_25.pnglabyrinth 发表于 2025-3-26 01:06:50
The Classical Galois Theoremomorphisms (and thus automorphisms) of . which fix all the elements of .. The Galois theorem exhibits a bijection between the subgroups of the Galois group and the intermediate field extensions . ⊆ . ⊆ ..变化 发表于 2025-3-26 05:29:13
http://reply.papertrans.cn/40/3911/391008/391008_27.pngVolatile-Oils 发表于 2025-3-26 09:43:01
http://reply.papertrans.cn/40/3911/391008/391008_28.pngRACE 发表于 2025-3-26 15:27:53
Logogen light. Die Architektur der Sprache,gs then exhibits an equivalence between the category of split algebras and that of profinite presheaves on the profinite Galois groupoid. In the case of fields, this reduces to the classical profinite Galois group and the Grothendieck Galois theorem for arbitrary Galois extensions of fields.思考而得 发表于 2025-3-26 19:02:16
http://reply.papertrans.cn/40/3911/391008/391008_30.png