Truman 发表于 2025-3-21 16:46:15

书目名称Groups with the Haagerup Property影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0389008<br><br>        <br><br>书目名称Groups with the Haagerup Property读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0389008<br><br>        <br><br>

会犯错误 发表于 2025-3-21 20:58:58

Christoph Böhm,Maximilian Hoferated products over finite groups (see also for a different proof of this fact). The third section has a somewhat different flavour: we give a sufficient condition for a finitely presented group to have the Haagerup property and simultaneously be of cohomological dimension at most 2 (in particular the group must be torsion-free).

semble 发表于 2025-3-22 02:02:05

http://reply.papertrans.cn/39/3891/389008/389008_3.png

harangue 发表于 2025-3-22 06:39:13

Discrete Groups,ated products over finite groups (see also for a different proof of this fact). The third section has a somewhat different flavour: we give a sufficient condition for a finitely presented group to have the Haagerup property and simultaneously be of cohomological dimension at most 2 (in particular the group must be torsion-free).

百灵鸟 发表于 2025-3-22 09:07:36

http://reply.papertrans.cn/39/3891/389008/389008_5.png

压倒 发表于 2025-3-22 13:14:42

http://reply.papertrans.cn/39/3891/389008/389008_6.png

压倒 发表于 2025-3-22 19:05:46

https://doi.org/10.1007/978-3-642-85001-1ay not have the Haagerup property. Hence we may ask whether relative property (T) (with respect to a noncompact subgroup) is the only obstruction to the Haagerup property. It was proved in Theorem 4.0.1 that the answer is positive for connected Lie groups..

暂时过来 发表于 2025-3-22 23:02:04

Dynamical Characterizations,he four characterizations of this property stated in Chapter 1. The equivalences are spread over , , and , and it may be useful to gather them all together in the same place.

蔓藤图饰 发表于 2025-3-23 05:18:12

Open Questions and Partial Results,ay not have the Haagerup property. Hence we may ask whether relative property (T) (with respect to a noncompact subgroup) is the only obstruction to the Haagerup property. It was proved in Theorem 4.0.1 that the answer is positive for connected Lie groups..

疏远天际 发表于 2025-3-23 08:30:48

Physical Test Methods for ElastomersFor a second countable, locally compact group .,consider the following four properties:
页: [1] 2 3 4 5
查看完整版本: Titlebook: ;